Evaluating Kubernetes at the Edge for Fault Tolerant Multi-Camera Computer Vision Applications

Owen Heckmann, A. Ravindran
{"title":"Evaluating Kubernetes at the Edge for Fault Tolerant Multi-Camera Computer Vision Applications","authors":"Owen Heckmann, A. Ravindran","doi":"10.1109/CCGridW59191.2023.00054","DOIUrl":null,"url":null,"abstract":"The rise of AI-powered computer vision algorithms offers the possibility of visual sensing of the environment in IoT applications through the widespread use of low-cost video cameras. The need for low latency, bandwidth limitations, and privacy concerns associated with video data motivates the use of edge computing for computer vision applications. However, unlike cloud computing with almost unbounded resources, the edge is characterized by compute nodes of limited capacity and power budget. Additionally, fault tolerance is limited due to replication costs at the edge.In this poster, we present our initial work on evaluating the performance of an edge-specific version of Kubernetes on a Raspberry Pi4 cluster for multi-camera computer vision applications. Kubernetes enables automated deployment and management of containerized distributed applications to run at scale across a cluster of compute and storage nodes, while handling node failures. However, existing literature has not characterized the resource consumption and latency impact of Kubernetes for computer vision applications on realistic edge clusters. Our experimental results indicate that while Kubernetes can deliver fault tolerance at the edge, the choices made in the design of containers pods significantly affects the observed tail latency on a low power edge cluster.","PeriodicalId":341115,"journal":{"name":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGridW59191.2023.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rise of AI-powered computer vision algorithms offers the possibility of visual sensing of the environment in IoT applications through the widespread use of low-cost video cameras. The need for low latency, bandwidth limitations, and privacy concerns associated with video data motivates the use of edge computing for computer vision applications. However, unlike cloud computing with almost unbounded resources, the edge is characterized by compute nodes of limited capacity and power budget. Additionally, fault tolerance is limited due to replication costs at the edge.In this poster, we present our initial work on evaluating the performance of an edge-specific version of Kubernetes on a Raspberry Pi4 cluster for multi-camera computer vision applications. Kubernetes enables automated deployment and management of containerized distributed applications to run at scale across a cluster of compute and storage nodes, while handling node failures. However, existing literature has not characterized the resource consumption and latency impact of Kubernetes for computer vision applications on realistic edge clusters. Our experimental results indicate that while Kubernetes can deliver fault tolerance at the edge, the choices made in the design of containers pods significantly affects the observed tail latency on a low power edge cluster.
评估边缘的Kubernetes在容错多相机计算机视觉应用中的应用
人工智能驱动的计算机视觉算法的兴起,通过广泛使用低成本摄像机,为物联网应用中对环境的视觉感知提供了可能性。对低延迟、带宽限制和与视频数据相关的隐私问题的需求促使边缘计算在计算机视觉应用程序中的使用。然而,与资源几乎无限的云计算不同,边缘计算的特点是计算节点的容量和功耗预算有限。此外,由于边缘的复制成本,容错性受到限制。在这张海报中,我们展示了我们在多摄像头计算机视觉应用的Raspberry Pi4集群上评估边缘特定版本Kubernetes性能的初步工作。Kubernetes支持容器化分布式应用程序的自动化部署和管理,以跨计算和存储节点集群大规模运行,同时处理节点故障。然而,现有文献并没有描述Kubernetes在实际边缘集群上用于计算机视觉应用的资源消耗和延迟影响。我们的实验结果表明,虽然Kubernetes可以在边缘提供容错性,但在设计容器pod时所做的选择会显著影响在低功耗边缘集群上观察到的尾部延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信