Control by Learning in a Temperature System Using a Maximum Sensibility Neural Network

D. Cabrera-Gaona, L. Torres-Treviño, A. Rodríguez-Liñán
{"title":"Control by Learning in a Temperature System Using a Maximum Sensibility Neural Network","authors":"D. Cabrera-Gaona, L. Torres-Treviño, A. Rodríguez-Liñán","doi":"10.1109/MICAI.2013.19","DOIUrl":null,"url":null,"abstract":"A maximum sensibility neural network is implemented in an embedded system to make an online machine learning system, which is used to control the temperature of a small chamber. This is made by manually controlling the temperature to different set-points with a potentiometer, and using these values as an online training data for the neural network. Then the neural network is able to automatically adjust the temperature to any given set point with a good performance.","PeriodicalId":340039,"journal":{"name":"2013 12th Mexican International Conference on Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 12th Mexican International Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2013.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A maximum sensibility neural network is implemented in an embedded system to make an online machine learning system, which is used to control the temperature of a small chamber. This is made by manually controlling the temperature to different set-points with a potentiometer, and using these values as an online training data for the neural network. Then the neural network is able to automatically adjust the temperature to any given set point with a good performance.
基于最大灵敏度神经网络的温度系统学习控制
在嵌入式系统中实现了最大灵敏度神经网络,实现了一个在线机器学习系统,并将其用于小室的温度控制。这是通过使用电位器手动控制温度到不同的设定点,并使用这些值作为神经网络的在线训练数据来实现的。然后,神经网络能够自动调节温度到任意给定的设定值,并具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信