Machine Learning Macroeconometrics: A Primer

Dimitris Korobilis
{"title":"Machine Learning Macroeconometrics: A Primer","authors":"Dimitris Korobilis","doi":"10.2139/ssrn.3246473","DOIUrl":null,"url":null,"abstract":"This Chapter reviews econometric methods that can be used in order to deal with the challenges of inference in high-dimensional empirical macro models with possibly 'more parameters than observations'.These methods broadly include machine learning algorithms for Big Data, but also more traditional estimation algorithms for data with a short span of observations relative to the number of explanatory variables. While building mainly on a univariate linear regression setting, I show how machine learning ideas can be generalized to classes of models that are interesting to applied macroeconomists, such as time-varying parameter models and vector autoregressions.","PeriodicalId":443911,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Macroeconomics (Topic)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Macroeconomics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3246473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This Chapter reviews econometric methods that can be used in order to deal with the challenges of inference in high-dimensional empirical macro models with possibly 'more parameters than observations'.These methods broadly include machine learning algorithms for Big Data, but also more traditional estimation algorithms for data with a short span of observations relative to the number of explanatory variables. While building mainly on a univariate linear regression setting, I show how machine learning ideas can be generalized to classes of models that are interesting to applied macroeconomists, such as time-varying parameter models and vector autoregressions.
机器学习宏观计量经济学:入门
本章回顾了可用于处理高维经验宏观模型中可能“参数多于观测值”的推理挑战的计量经济学方法。这些方法广泛地包括大数据的机器学习算法,但也包括相对于解释变量数量而言观测时间较短的数据的更传统的估计算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信