RoG§: A Pipeline for Automated Sensitive Data Identification and Anonymisation

Sotirios Nikoletos, S. Vlachos, Efstathios Zaragkas, C. Vassilakis, Christos Tryfonopoulos, Paraskevi Raftopoulou
{"title":"RoG§: A Pipeline for Automated Sensitive Data Identification and Anonymisation","authors":"Sotirios Nikoletos, S. Vlachos, Efstathios Zaragkas, C. Vassilakis, Christos Tryfonopoulos, Paraskevi Raftopoulou","doi":"10.1109/CSR57506.2023.10224962","DOIUrl":null,"url":null,"abstract":"Nowadays, the amount of data available online is constantly increasing. This data may contain sensitive or private information that can expose the person behind the data or be misused by malicious actors for identity theft, stalking, and other nefarious purposes. There is thus, a growing need to protect individuals' privacy and prevent data breaches in several application domains. Protecting data privacy though, is a complex and multifaceted issue that involves a range of legal, ethical, and technical considerations. In this paper, we discuss the challenges associated with data protection, the role of automated tools, and the effectiveness of identifying and anonymising sensitive data. We then, propose a fully-automated process for sensitive data identification and anonymisation, based on Natural Language Processing (NLP) techniques, that can be applied both in big diverse datasets and to a wide range of domains.","PeriodicalId":354918,"journal":{"name":"2023 IEEE International Conference on Cyber Security and Resilience (CSR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Cyber Security and Resilience (CSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSR57506.2023.10224962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, the amount of data available online is constantly increasing. This data may contain sensitive or private information that can expose the person behind the data or be misused by malicious actors for identity theft, stalking, and other nefarious purposes. There is thus, a growing need to protect individuals' privacy and prevent data breaches in several application domains. Protecting data privacy though, is a complex and multifaceted issue that involves a range of legal, ethical, and technical considerations. In this paper, we discuss the challenges associated with data protection, the role of automated tools, and the effectiveness of identifying and anonymising sensitive data. We then, propose a fully-automated process for sensitive data identification and anonymisation, based on Natural Language Processing (NLP) techniques, that can be applied both in big diverse datasets and to a wide range of domains.
一种自动敏感数据识别和匿名化的管道
如今,在线可用的数据量不断增加。这些数据可能包含敏感或私人信息,可能会暴露数据背后的人,或者被恶意行为者滥用,用于身份盗窃、跟踪和其他恶意目的。因此,越来越需要在多个应用领域保护个人隐私和防止数据泄露。然而,保护数据隐私是一个复杂而多方面的问题,涉及一系列法律、道德和技术方面的考虑。在本文中,我们讨论了与数据保护相关的挑战,自动化工具的作用,以及识别和匿名化敏感数据的有效性。然后,我们提出了一个基于自然语言处理(NLP)技术的敏感数据识别和匿名化的全自动过程,该过程可以应用于大型不同的数据集和广泛的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信