Generalized Correlations and Instantaneous Causality for Data Pairs Benchmark

H. Vinod
{"title":"Generalized Correlations and Instantaneous Causality for Data Pairs Benchmark","authors":"H. Vinod","doi":"10.2139/SSRN.2574891","DOIUrl":null,"url":null,"abstract":"Usual correlations assume linearity. If new generalized correlations satisfy r*(Y |X) > r*(X|Y ), X better predicts Y than vice versa. Then we say that X \"causes\" Y . Thus, Vinod (2013) revives Granger's instantaneous causality concept. Mooij et al. (2014) and their references seem unaware of causality in econometrics. We propose and illustrate new generalized correlations using benchmark data set Cause Effect Pairs (CEP) that consists of 88 different binary \"cause effect pairs\" from 31 real world data sources, where the cause is presumed known. Our ability to successfully identify the cause in some 75% of cases means researchers can benefit from using our fairly simple data- analytic R software tools as a first step to save time and expense.","PeriodicalId":113288,"journal":{"name":"Gabelli School of Business","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gabelli School of Business","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/SSRN.2574891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Usual correlations assume linearity. If new generalized correlations satisfy r*(Y |X) > r*(X|Y ), X better predicts Y than vice versa. Then we say that X "causes" Y . Thus, Vinod (2013) revives Granger's instantaneous causality concept. Mooij et al. (2014) and their references seem unaware of causality in econometrics. We propose and illustrate new generalized correlations using benchmark data set Cause Effect Pairs (CEP) that consists of 88 different binary "cause effect pairs" from 31 real world data sources, where the cause is presumed known. Our ability to successfully identify the cause in some 75% of cases means researchers can benefit from using our fairly simple data- analytic R software tools as a first step to save time and expense.
数据对基准的广义相关性和瞬时因果关系
通常的相关性假设是线性的。如果新的广义相关性满足r*(Y |X) > r*(X|Y),则X比反之更好地预测Y。然后我们说X“导致”Y。因此,Vinod(2013)恢复了格兰杰的瞬时因果关系概念。Mooij等人(2014)和他们的参考文献似乎没有意识到计量经济学中的因果关系。我们使用基准数据集因果对(CEP)提出并说明了新的广义相关性,CEP由来自31个真实世界数据源的88个不同的二元“因果对”组成,其中原因被假定为已知。我们能够在大约75%的病例中成功识别病因,这意味着研究人员可以从使用我们相当简单的数据分析R软件工具中受益,作为节省时间和费用的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信