Optimizing a linear function over a noncompact real algebraic variety

Feng Guo, Chu Wang, L. Zhi
{"title":"Optimizing a linear function over a noncompact real algebraic variety","authors":"Feng Guo, Chu Wang, L. Zhi","doi":"10.1145/2631948.2631957","DOIUrl":null,"url":null,"abstract":"Our aim is to compute such a polynomial Φ of the least possible degree. In [3, 4], Rostalski and Sturmfels explored dualities and their interconnections in the context of polynomial optimization (1.1). Assuming that the feasible regionX is irreducible, compact and smooth, they showed that the optimal value function Φ is represented by the defining equation of the hypersurface dual to the projective closure of X [4, Theorem 5.23]. In the present paper, we prove this conclusion is still true for a noncompact real algebraic variety X, when X is irreducible, smooth and the recession cone of the closure of the convex hull co (X) of X is pointed.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2631948.2631957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Our aim is to compute such a polynomial Φ of the least possible degree. In [3, 4], Rostalski and Sturmfels explored dualities and their interconnections in the context of polynomial optimization (1.1). Assuming that the feasible regionX is irreducible, compact and smooth, they showed that the optimal value function Φ is represented by the defining equation of the hypersurface dual to the projective closure of X [4, Theorem 5.23]. In the present paper, we prove this conclusion is still true for a noncompact real algebraic variety X, when X is irreducible, smooth and the recession cone of the closure of the convex hull co (X) of X is pointed.
非紧实代数变量上线性函数的优化
我们的目标是计算这样一个多项式Φ的最小可能的次。在[3,4]中,Rostalski和Sturmfels在多项式优化的背景下探讨了对偶性及其相互联系(1.1)。假设可行域X是不可约的、紧致的和光滑的,他们证明了最优值函数Φ用X的射影闭包的超曲面对偶的定义方程来表示[4,定理5.23]。在本文中,我们证明了对于非紧实代数变量X,当X不可约、光滑且X的凸包的闭包co (X)的退锥是尖的情况下,这个结论仍然成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信