A novel passenger hotspots searching algorithm for taxis in urban area

Yuhan Dong, Siyuan Qian, Kai Zhang, Yongzhi Zhai
{"title":"A novel passenger hotspots searching algorithm for taxis in urban area","authors":"Yuhan Dong, Siyuan Qian, Kai Zhang, Yongzhi Zhai","doi":"10.1109/SNPD.2017.8022719","DOIUrl":null,"url":null,"abstract":"Passenger hotspots searching is essential to increase profits for taxis drivers in urban area. In this paper, we propose a two-step approach for pick-up hotspots searching. In the first step, a traveling similarity model is built to quantify the similarity of traveling behaviors. In the second step, we utilize affinity propagation and simulated annealing to identify the daily passenger hotspots in a selected period. Numerical results based on GPS data of Manhattan taxis suggest that the proposed approach outperforms the traditional spatio-temporal clustering regardless of buffer radius.","PeriodicalId":186094,"journal":{"name":"2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","volume":"34 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD.2017.8022719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Passenger hotspots searching is essential to increase profits for taxis drivers in urban area. In this paper, we propose a two-step approach for pick-up hotspots searching. In the first step, a traveling similarity model is built to quantify the similarity of traveling behaviors. In the second step, we utilize affinity propagation and simulated annealing to identify the daily passenger hotspots in a selected period. Numerical results based on GPS data of Manhattan taxis suggest that the proposed approach outperforms the traditional spatio-temporal clustering regardless of buffer radius.
城市出租车乘客热点搜索算法
乘客热点搜索对于提高城市出租车司机的利润至关重要。本文提出了一种两步法的接机热点搜索方法。首先,建立出行相似度模型,量化出行行为的相似度。在第二步中,我们利用亲和传播和模拟退火来识别选定时间段内的每日乘客热点。基于曼哈顿出租车GPS数据的数值结果表明,该方法在不考虑缓冲半径的情况下优于传统的时空聚类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信