A Lattice Boltzmann Subgrid Model for High Reynolds Number Flows

S. Hou, J. Sterling, Shiyi Chen, G. Doolen
{"title":"A Lattice Boltzmann Subgrid Model for High Reynolds Number Flows","authors":"S. Hou, J. Sterling, Shiyi Chen, G. Doolen","doi":"10.1090/fic/006/12","DOIUrl":null,"url":null,"abstract":"A subgrid turbulence model for the lattice Boltzmann method is proposed for high Reynolds number fluid flow applications. The method, based on the standard Smagorinsky subgrid model and a single-time relaxation lattice Boltzmann method, incorporates the advantages of the lattice Boltzmann method for handling arbitrary boundaries and is easily implemented on parallel machines. The method is applied to a two-dimensional driven cavity flow for studying dynamics and the Reynolds number dependence of the flow structures. The substitution of other subgrid models, such as the dynamic subgrid model, in the framework of the LB method is discussed.","PeriodicalId":436460,"journal":{"name":"arXiv: Cellular Automata and Lattice Gases","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"278","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Cellular Automata and Lattice Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/fic/006/12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 278

Abstract

A subgrid turbulence model for the lattice Boltzmann method is proposed for high Reynolds number fluid flow applications. The method, based on the standard Smagorinsky subgrid model and a single-time relaxation lattice Boltzmann method, incorporates the advantages of the lattice Boltzmann method for handling arbitrary boundaries and is easily implemented on parallel machines. The method is applied to a two-dimensional driven cavity flow for studying dynamics and the Reynolds number dependence of the flow structures. The substitution of other subgrid models, such as the dynamic subgrid model, in the framework of the LB method is discussed.
高雷诺数流动的格子Boltzmann子网格模型
针对高雷诺数流体流动问题,提出了晶格玻尔兹曼方法的亚网格湍流模型。该方法基于标准Smagorinsky子网格模型和单时间松弛晶格玻尔兹曼方法,结合了晶格玻尔兹曼方法处理任意边界的优点,易于在并行机器上实现。将该方法应用于二维驱动空腔流动,研究了流动结构的动力学和雷诺数依赖关系。讨论了在LB方法框架内替代其他子网格模型,如动态子网格模型的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信