{"title":"Load adaptive power control in LTE Uplink","authors":"Malek Boussif, C. Rosa, J. Wigard, R. Müllner","doi":"10.1109/EW.2010.5483432","DOIUrl":null,"url":null,"abstract":"In LTE Uplink, the slow varying pathgain and shadowing are compensated by the standardized open loop power control (OLPC) which is based on a power density offset and a compensating factor for the pathloss experienced by the users. The optimization of those parameters reveals a dependency on the allocated bandwidth. A Load Adaptive Power Control (LAPC) algorithm is proposed to handle the bandwidth variations and ensure optimal system performance. In this contribution it is shown that using closed loop power control commands to adapt the transmission power density to the used bandwidth, it is possible to achieve coverage gains up to 60% while maintaining a cell throughput comparable to the reference case.","PeriodicalId":232165,"journal":{"name":"2010 European Wireless Conference (EW)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 European Wireless Conference (EW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EW.2010.5483432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
In LTE Uplink, the slow varying pathgain and shadowing are compensated by the standardized open loop power control (OLPC) which is based on a power density offset and a compensating factor for the pathloss experienced by the users. The optimization of those parameters reveals a dependency on the allocated bandwidth. A Load Adaptive Power Control (LAPC) algorithm is proposed to handle the bandwidth variations and ensure optimal system performance. In this contribution it is shown that using closed loop power control commands to adapt the transmission power density to the used bandwidth, it is possible to achieve coverage gains up to 60% while maintaining a cell throughput comparable to the reference case.