Characterizing pseudoentropy

S. Vadhan, C. Zheng
{"title":"Characterizing pseudoentropy","authors":"S. Vadhan, C. Zheng","doi":"10.1109/ITW.2012.6404635","DOIUrl":null,"url":null,"abstract":"We provide a characterization of “pseudoentropy” in terms of hardness of sampling: Let (X, B) be jointly distributed random variables such that B takes values in a polynomial-sized set. We show that no polynomial-time algorithm can distinguish B from some random variable of higher Shannon entropy given X if and only if there is no probabilistic polynomial-time S such that (X, S(X)) has small KL divergence from (X, B). As an application of this characterization, we show that if f is a one-way function (f is easy to compute but hard to invert), then (f(Un),Un) has “next-bit pseudoentropy” at least n + log n, establishing a conjecture of Haitner, Reingold, and Vadhan (STOC '10). Plugging this into the construction of Haitner et al., we obtain a simpler construction of pseudorandom generators from one-way functions.","PeriodicalId":325771,"journal":{"name":"2012 IEEE Information Theory Workshop","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Information Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2012.6404635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We provide a characterization of “pseudoentropy” in terms of hardness of sampling: Let (X, B) be jointly distributed random variables such that B takes values in a polynomial-sized set. We show that no polynomial-time algorithm can distinguish B from some random variable of higher Shannon entropy given X if and only if there is no probabilistic polynomial-time S such that (X, S(X)) has small KL divergence from (X, B). As an application of this characterization, we show that if f is a one-way function (f is easy to compute but hard to invert), then (f(Un),Un) has “next-bit pseudoentropy” at least n + log n, establishing a conjecture of Haitner, Reingold, and Vadhan (STOC '10). Plugging this into the construction of Haitner et al., we obtain a simpler construction of pseudorandom generators from one-way functions.
描述pseudoentropy
我们根据采样的硬度提供了“伪熵”的表征:设(X, B)是联合分布的随机变量,使得B在多项式大小的集合中取值。我们表明,没有多项式时间算法能区分B从高等夏侬熵给出一些随机变量X当且仅当没有概率多项式时间年代这样(X, S (X))小KL分歧(X, B)。作为应用程序的特征,我们表明,如果f是单向函数(f是容易计算,但难以反转),然后(f(联合国)、联合国)”下pseudoentropy”至少n + o (log n),建立一个猜想Haitner, Reingold, Vadhan(获得STOC 10)。将此代入Haitner等人的构造中,我们从单向函数中获得了更简单的伪随机生成器构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信