Generalized 2D principal component analysis

Hui Kong, Xuchun Li, Lei Wang, E. K. Teoh, Jian-gang Wang, R. Venkateswarlu
{"title":"Generalized 2D principal component analysis","authors":"Hui Kong, Xuchun Li, Lei Wang, E. K. Teoh, Jian-gang Wang, R. Venkateswarlu","doi":"10.1109/IJCNN.2005.1555814","DOIUrl":null,"url":null,"abstract":"A two-dimensional principal component analysis (2DPCA) by J. Yang et al. (2004) was proposed and the authors have demonstrated its superiority over the conventional principal component analysis (PCA) in face recognition. But the theoretical proof why 2DPCA is better than PCA has not been given until now. In this paper, the essence of 2DPCA is analyzed and a framework of generalized 2D principal component analysis (G2DPCA) is proposed to extend the original 2DPCA in two perspectives: a bilateral-projection-based 2DPCA (B2DPCA) and a kernel-based 2DPCA (K2DPCA) schemes are introduced. Experimental results in face recognition show its excellent performance.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1555814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90

Abstract

A two-dimensional principal component analysis (2DPCA) by J. Yang et al. (2004) was proposed and the authors have demonstrated its superiority over the conventional principal component analysis (PCA) in face recognition. But the theoretical proof why 2DPCA is better than PCA has not been given until now. In this paper, the essence of 2DPCA is analyzed and a framework of generalized 2D principal component analysis (G2DPCA) is proposed to extend the original 2DPCA in two perspectives: a bilateral-projection-based 2DPCA (B2DPCA) and a kernel-based 2DPCA (K2DPCA) schemes are introduced. Experimental results in face recognition show its excellent performance.
广义二维主成分分析
J. Yang等人(2004)提出了二维主成分分析(2DPCA),并证明了其在人脸识别中优于传统主成分分析(PCA)的优点。但迄今为止,还没有理论证明2DPCA优于PCA。本文分析了二维主成分分析的本质,提出了广义二维主成分分析框架(G2DPCA),从两个方面对原有的二维主成分分析进行了扩展:基于双边投影的2DPCA (B2DPCA)和基于核的2DPCA (K2DPCA)方案。人脸识别实验结果表明了该方法的优异性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信