A Mutated Salp Swarm Algorithm for Optimization of Support Vector Machine Parameters

R. Rajalaxmi, E. Vidhya
{"title":"A Mutated Salp Swarm Algorithm for Optimization of Support Vector Machine Parameters","authors":"R. Rajalaxmi, E. Vidhya","doi":"10.1109/ICACCS.2019.8728416","DOIUrl":null,"url":null,"abstract":"Support Vector Machine (SVM) is typically a supervised learning algorithm that carefully examines input and identifies distinct patterns. The function of SVM classifier relies on adjusting or controlling of kernel and penalty parameter values. Nature Inspired Algorithm helps to solve the natural problems and has been attracting considerable attention due to their better performance. Salp Swarm Algorithm (SSA) is a Nature Inspired Algorithm (NIA) which is used to control the finest SVM parameters value. To improve exploration capability of SSA, mutation method is developed to find the optimal value for kernel parameter and penalty parameter. The preliminary result indicates Mutated SSA with SVM increases classification accuracy than simple SSA with SVM.","PeriodicalId":249139,"journal":{"name":"2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCS.2019.8728416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Support Vector Machine (SVM) is typically a supervised learning algorithm that carefully examines input and identifies distinct patterns. The function of SVM classifier relies on adjusting or controlling of kernel and penalty parameter values. Nature Inspired Algorithm helps to solve the natural problems and has been attracting considerable attention due to their better performance. Salp Swarm Algorithm (SSA) is a Nature Inspired Algorithm (NIA) which is used to control the finest SVM parameters value. To improve exploration capability of SSA, mutation method is developed to find the optimal value for kernel parameter and penalty parameter. The preliminary result indicates Mutated SSA with SVM increases classification accuracy than simple SSA with SVM.
支持向量机参数优化的突变Salp群算法
支持向量机(SVM)是一种典型的监督学习算法,它仔细检查输入并识别不同的模式。支持向量机分类器的功能依赖于核参数和惩罚参数值的调节或控制。自然启发算法有助于解决自然问题,并因其较好的性能而受到广泛关注。Salp Swarm Algorithm (SSA)是一种自然启发算法(NIA),用于控制支持向量机参数的最优值。为了提高SSA的搜索能力,提出了一种寻找核参数和惩罚参数最优值的变异方法。初步结果表明,基于支持向量机的突变SSA比基于支持向量机的简单SSA分类精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信