Crystal plasticity analysis of the suppression of dislocation accumulation during the production process of semiconductor devices

K. Iwayama, Michihiro Sato, T. Ohashi, T. Maruizumi
{"title":"Crystal plasticity analysis of the suppression of dislocation accumulation during the production process of semiconductor devices","authors":"K. Iwayama, Michihiro Sato, T. Ohashi, T. Maruizumi","doi":"10.1299/JSMEHOKKAIDO.2016.54.53","DOIUrl":null,"url":null,"abstract":"High-density memories and high-speed CPUs are usually realized by reduction of the size of semiconductor cells in Large Scale Integrations (LSIs). Representative length scale of Ultra Large Scale Integration (ULSI) cells is going to be in nano-meter order. Dislocation accumulation during the production process in the electron channel of semiconductor device is one of the most serious problems. Dislocation accumulation has an enormous effect on the electronic state of the device. Therefore, the evaluation and suppression of dislocation accumulation are crucially important for the design and development of semiconductor device structure. In this study, we numerically analyze the suppression of dislocation accumulation in the shallow trench isolation type ULSI cells. Accumulation of dislocations is analyzed by employing a technique of crystal plasticity analysis and we evaluate the dislocation density distribution and total length of dislocations in the silicon substrate. Possibilities for the suppression of dislocation accumulation are discussed.","PeriodicalId":341040,"journal":{"name":"Transactions of the JSME (in Japanese)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the JSME (in Japanese)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEHOKKAIDO.2016.54.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-density memories and high-speed CPUs are usually realized by reduction of the size of semiconductor cells in Large Scale Integrations (LSIs). Representative length scale of Ultra Large Scale Integration (ULSI) cells is going to be in nano-meter order. Dislocation accumulation during the production process in the electron channel of semiconductor device is one of the most serious problems. Dislocation accumulation has an enormous effect on the electronic state of the device. Therefore, the evaluation and suppression of dislocation accumulation are crucially important for the design and development of semiconductor device structure. In this study, we numerically analyze the suppression of dislocation accumulation in the shallow trench isolation type ULSI cells. Accumulation of dislocations is analyzed by employing a technique of crystal plasticity analysis and we evaluate the dislocation density distribution and total length of dislocations in the silicon substrate. Possibilities for the suppression of dislocation accumulation are discussed.
半导体器件生产过程中抑制位错积累的晶体塑性分析
在大规模集成电路中,通常通过减小半导体单元的尺寸来实现高密度存储器和高速cpu。超大规模集成电路(ULSI)电池的代表性长度尺度将是纳米级。在半导体器件的电子通道中,位错积累是生产过程中最严重的问题之一。位错积累对器件的电子状态有很大的影响。因此,评估和抑制位错积累对于半导体器件结构的设计和开发至关重要。在本研究中,我们数值分析了在浅沟隔离型ULSI细胞中位错积累的抑制。采用晶体塑性分析技术分析了位错的积累,并计算了硅衬底中位错的密度分布和位错的总长度。讨论了抑制位错积累的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信