Object recognition and pose estimation with a fast and versatile 3D robot sensor

T. Stahs, F. Wahl
{"title":"Object recognition and pose estimation with a fast and versatile 3D robot sensor","authors":"T. Stahs, F. Wahl","doi":"10.1109/ICPR.1992.201653","DOIUrl":null,"url":null,"abstract":"Presents a new approach to object recognition and pose estimation based on a 3D robot sensor, which produces range images of a scene along problem specific lines of sight. Recognition is realized as a hypothesis generation/hypothesis verification process. Hypothesis generation is based on a minimal number of predominant and connected object parts in one or more range images determining all 6 degrees of freedom of an objects pose. This set of object parts is transformed into a hypotheses set by simple look-up operations in precalculated hash tables. In the subsequent verification step the authors determine an inspection list for the best recognizable, most distinctive and best visible object parts in this hypotheses set and verify the hypotheses by searching these object parts in existing or new range images.<<ETX>>","PeriodicalId":410961,"journal":{"name":"[1992] Proceedings. 11th IAPR International Conference on Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings. 11th IAPR International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Presents a new approach to object recognition and pose estimation based on a 3D robot sensor, which produces range images of a scene along problem specific lines of sight. Recognition is realized as a hypothesis generation/hypothesis verification process. Hypothesis generation is based on a minimal number of predominant and connected object parts in one or more range images determining all 6 degrees of freedom of an objects pose. This set of object parts is transformed into a hypotheses set by simple look-up operations in precalculated hash tables. In the subsequent verification step the authors determine an inspection list for the best recognizable, most distinctive and best visible object parts in this hypotheses set and verify the hypotheses by searching these object parts in existing or new range images.<>
基于快速多功能3D机器人传感器的目标识别与姿态估计
提出了一种基于三维机器人传感器的物体识别和姿态估计的新方法,该方法沿问题特定的视线产生场景的距离图像。识别是作为假设生成/假设验证过程来实现的。假设生成是基于一个或多个范围图像中主要和连接的物体部分的最小数量,确定物体姿势的所有6个自由度。通过在预先计算的哈希表中进行简单的查找操作,将这组对象部分转换为假设集。在随后的验证步骤中,作者确定了该假设集中最可识别、最独特和最可见的物体部分的检查列表,并通过在现有或新的范围图像中搜索这些物体部分来验证假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信