Oriented Schubert calculus in Chow–Witt rings of Grassmannians

Matthias Wendt
{"title":"Oriented Schubert calculus in Chow–Witt rings\n of Grassmannians","authors":"Matthias Wendt","doi":"10.1090/conm/745/15027","DOIUrl":null,"url":null,"abstract":"We apply the previous calculations of Chow-Witt rings of Grassmannians to develop an oriented analogue of the classical Schubert calculus. As a result, we get complete diagrammatic descriptions of the ring structure in Chow-Witt rings and twisted Witt groups. In the resulting arithmetic refinements of Schubert calculus, the multiplicity of a solution subspace is a quadratic form encoding additional orientation information. We also discuss a couple of applications, such as a Chow-Witt version of the signed count of balanced subspaces of Feh\\'er and Matszangosz.","PeriodicalId":246899,"journal":{"name":"Motivic Homotopy Theory and Refined\n Enumerative Geometry","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Motivic Homotopy Theory and Refined\n Enumerative Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/745/15027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We apply the previous calculations of Chow-Witt rings of Grassmannians to develop an oriented analogue of the classical Schubert calculus. As a result, we get complete diagrammatic descriptions of the ring structure in Chow-Witt rings and twisted Witt groups. In the resulting arithmetic refinements of Schubert calculus, the multiplicity of a solution subspace is a quadratic form encoding additional orientation information. We also discuss a couple of applications, such as a Chow-Witt version of the signed count of balanced subspaces of Feh\'er and Matszangosz.
格拉斯曼人的Chow-Witt环中的定向Schubert微积分
我们应用先前的格拉斯曼周-维特环的计算来发展经典舒伯特微积分的定向模拟。得到了Chow-Witt环和扭曲Witt群环结构的完整图解描述。在所得的舒伯特微积分的算术改进中,解子空间的多重性是编码附加方向信息的二次型。我们还讨论了一些应用,例如Feh\ er和Matszangosz的平衡子空间的有符号计数的Chow-Witt版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信