A navigation system based on an ominidirectional vision sensor

L. Delahoche, C. Pégard, B. Marhic, P. Vasseur
{"title":"A navigation system based on an ominidirectional vision sensor","authors":"L. Delahoche, C. Pégard, B. Marhic, P. Vasseur","doi":"10.1109/IROS.1997.655090","DOIUrl":null,"url":null,"abstract":"In this paper we present a dynamic localization system which allows a mobile robot to evolve autonomously in a structured environment. Our system is based on the use of two sensors: an odometer and an omnidirectional vision system which gives a reference in connection with a set of natural beacons. Our navigation algorithm gives a reliable position estimation due to a systematic dynamic resetting. To merge the data obtained we use the extended Kalman filter. Our proposed method allows us to treat efficiently the noise problems linked to the primitive extraction, which contributes to the robustness of our system. Thus, we have developed a reliable and quick navigation system which can deals with the constraints of moving the robots in an industrial environment. We give the experimental results obtained from a mission realized in an a priori known environment.","PeriodicalId":408848,"journal":{"name":"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1997.655090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

In this paper we present a dynamic localization system which allows a mobile robot to evolve autonomously in a structured environment. Our system is based on the use of two sensors: an odometer and an omnidirectional vision system which gives a reference in connection with a set of natural beacons. Our navigation algorithm gives a reliable position estimation due to a systematic dynamic resetting. To merge the data obtained we use the extended Kalman filter. Our proposed method allows us to treat efficiently the noise problems linked to the primitive extraction, which contributes to the robustness of our system. Thus, we have developed a reliable and quick navigation system which can deals with the constraints of moving the robots in an industrial environment. We give the experimental results obtained from a mission realized in an a priori known environment.
一种基于全方位视觉传感器的导航系统
在本文中,我们提出了一个动态定位系统,它允许移动机器人在结构化环境中自主进化。我们的系统基于两个传感器的使用:一个里程表和一个全方位视觉系统,它提供了与一组自然信标相关的参考。由于系统的动态重置,我们的导航算法给出了可靠的位置估计。为了合并得到的数据,我们使用扩展卡尔曼滤波器。我们提出的方法使我们能够有效地处理与原始提取相关的噪声问题,这有助于我们的系统具有鲁棒性。因此,我们开发了一种可靠、快速的导航系统,可以处理在工业环境中移动机器人的限制。我们给出了在先验已知环境中实现的任务的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信