Dynamical zeta functions of Reidemeister type and representations spaces

A. Fel’shtyn, M. Zietek
{"title":"Dynamical zeta functions of Reidemeister type\n and representations spaces","authors":"A. Fel’shtyn, M. Zietek","doi":"10.1090/conm/744/14979","DOIUrl":null,"url":null,"abstract":"In this paper we continue to study the Reidemeister zeta function. We prove P\\'olya -- Carlson dichotomy between rationality and a natural boundary for analytic behavior of the Reidemeister zeta function for a large class of automorphisms of Abelian groups. We also study dynamical representation theory zeta functions counting numbers of fixed irreducible representations for iterations of an endomorphism. The rationality and functional equation for these zeta functions are proven for several classes of groups. We find a connection between these zeta functions and the Reidemeister torsions of the corresponding mapping tori. We also establish the connection between the Reidemeister zeta function and dynamical representation theory zeta functions under restriction of endomorphism to a subgroup and to a quotient group.","PeriodicalId":412693,"journal":{"name":"Dynamics: Topology and Numbers","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics: Topology and Numbers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/744/14979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we continue to study the Reidemeister zeta function. We prove P\'olya -- Carlson dichotomy between rationality and a natural boundary for analytic behavior of the Reidemeister zeta function for a large class of automorphisms of Abelian groups. We also study dynamical representation theory zeta functions counting numbers of fixed irreducible representations for iterations of an endomorphism. The rationality and functional equation for these zeta functions are proven for several classes of groups. We find a connection between these zeta functions and the Reidemeister torsions of the corresponding mapping tori. We also establish the connection between the Reidemeister zeta function and dynamical representation theory zeta functions under restriction of endomorphism to a subgroup and to a quotient group.
Reidemeister型的动态zeta函数及其表示空间
本文继续研究Reidemeister zeta函数。我们证明了一类大的阿贝尔群自同构的Reidemeister zeta函数的解析行为的理性与自然边界之间的P\'olya—Carlson二分法。我们还研究了动态表示理论zeta函数对一个自同态迭代的固定不可约表示的计数。对几类群证明了这些ζ函数的合理性和泛函方程。我们发现了这些函数和对应映射环面的Reidemeister扭转之间的联系。建立了Reidemeister zeta函数与动态表示理论zeta函数在子群和商群自同态约束下的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信