Design of Schmidt-Kalman filter for target tracking with navigation errors

Chun Yang, Erik Blasch, P. Douville
{"title":"Design of Schmidt-Kalman filter for target tracking with navigation errors","authors":"Chun Yang, Erik Blasch, P. Douville","doi":"10.1109/AERO.2010.5446689","DOIUrl":null,"url":null,"abstract":"In most target tracking formulations, the tracking sensor location is typically assumed perfectly known. Without accounting for navigation errors of the sensor platform, regular Kalman filters tend to be optimistic (i.e., the covariance matrix far below the actual mean squared errors). In this paper, the Schmidt-Kalman filter (SKF) is formulated for target tracking with navigation errors. The SKF does not estimate the navigation errors explicitly but rather takes into account (i.e., considers) the navigation error covariance provided by an on-board navigation unit in the tracking filter formulation. Including the navigation errors leads to the so-called “consider covariance.” By exploring the structural navigation errors, the SKF is not only more consistent but also produces smaller mean squared errors than regular Kalman filters. Monte Carlo simulation results are presented in the paper to demonstrate the operation and performance of the SKF for target tracking in the presence of navigation errors.1,2","PeriodicalId":378029,"journal":{"name":"2010 IEEE Aerospace Conference","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2010.5446689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In most target tracking formulations, the tracking sensor location is typically assumed perfectly known. Without accounting for navigation errors of the sensor platform, regular Kalman filters tend to be optimistic (i.e., the covariance matrix far below the actual mean squared errors). In this paper, the Schmidt-Kalman filter (SKF) is formulated for target tracking with navigation errors. The SKF does not estimate the navigation errors explicitly but rather takes into account (i.e., considers) the navigation error covariance provided by an on-board navigation unit in the tracking filter formulation. Including the navigation errors leads to the so-called “consider covariance.” By exploring the structural navigation errors, the SKF is not only more consistent but also produces smaller mean squared errors than regular Kalman filters. Monte Carlo simulation results are presented in the paper to demonstrate the operation and performance of the SKF for target tracking in the presence of navigation errors.1,2
导航误差下目标跟踪的施密特-卡尔曼滤波设计
在大多数目标跟踪公式中,通常假设跟踪传感器的位置是完全已知的。在不考虑传感器平台导航误差的情况下,常规卡尔曼滤波器往往是乐观的(即协方差矩阵远低于实际均方误差)。针对存在导航误差的目标跟踪问题,提出了一种基于施密特-卡尔曼滤波的目标跟踪方法。SKF不显式地估计导航误差,而是考虑(即考虑)跟踪滤波器公式中车载导航单元提供的导航误差协方差。包括导航误差导致所谓的“考虑协方差”。通过探索结构导航误差,与常规卡尔曼滤波器相比,SKF不仅具有更高的一致性,而且产生更小的均方误差。本文给出了蒙特卡罗仿真结果,以证明在存在导航误差的情况下,SKF在目标跟踪中的操作和性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信