Classification of Tropical Disease-carrying Mosquitoes Using Deep Learning and SHAP

Vinicius L. N. Fonseca, Fagner Cunha, Larissa Andrade, J. Colonna, David De Yong
{"title":"Classification of Tropical Disease-carrying Mosquitoes Using Deep Learning and SHAP","authors":"Vinicius L. N. Fonseca, Fagner Cunha, Larissa Andrade, J. Colonna, David De Yong","doi":"10.5753/sbcas.2023.229406","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel technique for identifying mosquitoes that carry tropical diseases using Deep Learning and SHAP for model interpretability. We propose an end-to-end deep (E2E) Convolutional Neural Network (CNN) architecture that leverages mosquito wingbeat sounds to extract relevant features. To achieve high-performance audio processing, we integrate Kapre, an audio processing library optimized for GPU execution. Our approach also incorporates SHAP to provide a transparent explanation of the model’s predictions, enabling us to identify and characterize the time-frequency patterns that the model emphasizes. Ultimately, our research aims to support disease control initiatives by providing an automated means of identifying disease-carrying mosquito species, which has the potential to improve public health in tropical regions.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2023.229406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a novel technique for identifying mosquitoes that carry tropical diseases using Deep Learning and SHAP for model interpretability. We propose an end-to-end deep (E2E) Convolutional Neural Network (CNN) architecture that leverages mosquito wingbeat sounds to extract relevant features. To achieve high-performance audio processing, we integrate Kapre, an audio processing library optimized for GPU execution. Our approach also incorporates SHAP to provide a transparent explanation of the model’s predictions, enabling us to identify and characterize the time-frequency patterns that the model emphasizes. Ultimately, our research aims to support disease control initiatives by providing an automated means of identifying disease-carrying mosquito species, which has the potential to improve public health in tropical regions.
利用深度学习和SHAP对带病蚊子进行分类
在本文中,我们提出了一种利用深度学习和SHAP模型可解释性来识别携带热带疾病的蚊子的新技术。我们提出了一种端到端深度(E2E)卷积神经网络(CNN)架构,该架构利用蚊子拍打翅膀的声音来提取相关特征。为了实现高性能的音频处理,我们集成了Kapre,一个针对GPU执行优化的音频处理库。我们的方法还结合了SHAP,为模型的预测提供了一个透明的解释,使我们能够识别和描述模型所强调的时频模式。最终,我们的研究旨在通过提供一种识别携带疾病的蚊子种类的自动化方法来支持疾病控制举措,这有可能改善热带地区的公共卫生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信