Vinicius L. N. Fonseca, Fagner Cunha, Larissa Andrade, J. Colonna, David De Yong
{"title":"Classification of Tropical Disease-carrying Mosquitoes Using Deep Learning and SHAP","authors":"Vinicius L. N. Fonseca, Fagner Cunha, Larissa Andrade, J. Colonna, David De Yong","doi":"10.5753/sbcas.2023.229406","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel technique for identifying mosquitoes that carry tropical diseases using Deep Learning and SHAP for model interpretability. We propose an end-to-end deep (E2E) Convolutional Neural Network (CNN) architecture that leverages mosquito wingbeat sounds to extract relevant features. To achieve high-performance audio processing, we integrate Kapre, an audio processing library optimized for GPU execution. Our approach also incorporates SHAP to provide a transparent explanation of the model’s predictions, enabling us to identify and characterize the time-frequency patterns that the model emphasizes. Ultimately, our research aims to support disease control initiatives by providing an automated means of identifying disease-carrying mosquito species, which has the potential to improve public health in tropical regions.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2023.229406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a novel technique for identifying mosquitoes that carry tropical diseases using Deep Learning and SHAP for model interpretability. We propose an end-to-end deep (E2E) Convolutional Neural Network (CNN) architecture that leverages mosquito wingbeat sounds to extract relevant features. To achieve high-performance audio processing, we integrate Kapre, an audio processing library optimized for GPU execution. Our approach also incorporates SHAP to provide a transparent explanation of the model’s predictions, enabling us to identify and characterize the time-frequency patterns that the model emphasizes. Ultimately, our research aims to support disease control initiatives by providing an automated means of identifying disease-carrying mosquito species, which has the potential to improve public health in tropical regions.