Self-stabilizing algorithms for sorting and heapification

Doina Bein, A. Datta, L. Larmore
{"title":"Self-stabilizing algorithms for sorting and heapification","authors":"Doina Bein, A. Datta, L. Larmore","doi":"10.1109/IPDPS.2008.4536327","DOIUrl":null,"url":null,"abstract":"We present two space and time efficient asynchronous distributed self-stabilizing algorithms. The first sorts an oriented chain network and the second heapifies a rooted tree network. The time complexity of both solutions is linear - in terms of the nodes (for the chain) and height (for the tree). The chain sorting algorithm uses O(m) bits per process where m represents the number of bits required to store any value in the network. The heapify algorithm needs O(m ldr D) bits per process where D is the degree of the tree.","PeriodicalId":162608,"journal":{"name":"2008 IEEE International Symposium on Parallel and Distributed Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Parallel and Distributed Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2008.4536327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present two space and time efficient asynchronous distributed self-stabilizing algorithms. The first sorts an oriented chain network and the second heapifies a rooted tree network. The time complexity of both solutions is linear - in terms of the nodes (for the chain) and height (for the tree). The chain sorting algorithm uses O(m) bits per process where m represents the number of bits required to store any value in the network. The heapify algorithm needs O(m ldr D) bits per process where D is the degree of the tree.
排序和堆化的自稳定算法
提出了两种具有空间和时间效率的异步分布式自稳定算法。第一种方法是对有向链网络进行排序,第二种方法是对有根树网络进行堆积。这两种解决方案的时间复杂度都是线性的——就节点(链)和高度(树)而言。链式排序算法每个进程使用O(m)位,其中m表示在网络中存储任何值所需的位数。heapify算法每个进程需要O(m ldr D)位,其中D是树的度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信