Breast Cancer Classification Using Deep Learning

Jasmir, S. Nurmaini, R. F. Malik, D. Abidin, A. Zarkasi, Yesi Novaria Kunang, Firdaus
{"title":"Breast Cancer Classification Using Deep Learning","authors":"Jasmir, S. Nurmaini, R. F. Malik, D. Abidin, A. Zarkasi, Yesi Novaria Kunang, Firdaus","doi":"10.1109/ICECOS.2018.8605180","DOIUrl":null,"url":null,"abstract":"Breast cancer has been identified as the most widespread cancer amongst women and also the major cause of female cancer death all over the world. In this paper, we build the classification model of a person who is exposed to breast cancer based on recurrences-event and no-recurrences event. This classification using datasets from the University of Medicine Center, Institute Of Oncology, Ljublijana, Yugoslavia of the 286 datasets consist 2 classes, 201 No-Recurrences-Events classes, 85 Recurrences-events classes and 10 attributes including classes. The algorithm used for breast cancer classification is the Multilayer Perceptron algorithm with the accuracy level of 96.5% and high evaluation is 69.93% in 8-fold cross validation from 10-fold cross validation.","PeriodicalId":149318,"journal":{"name":"2018 International Conference on Electrical Engineering and Computer Science (ICECOS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Electrical Engineering and Computer Science (ICECOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECOS.2018.8605180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Breast cancer has been identified as the most widespread cancer amongst women and also the major cause of female cancer death all over the world. In this paper, we build the classification model of a person who is exposed to breast cancer based on recurrences-event and no-recurrences event. This classification using datasets from the University of Medicine Center, Institute Of Oncology, Ljublijana, Yugoslavia of the 286 datasets consist 2 classes, 201 No-Recurrences-Events classes, 85 Recurrences-events classes and 10 attributes including classes. The algorithm used for breast cancer classification is the Multilayer Perceptron algorithm with the accuracy level of 96.5% and high evaluation is 69.93% in 8-fold cross validation from 10-fold cross validation.
使用深度学习的乳腺癌分类
乳腺癌已被确定为妇女中最普遍的癌症,也是世界各地女性癌症死亡的主要原因。在本文中,我们基于复发事件和无复发事件建立了乳腺癌暴露者的分类模型。这种分类使用来自南斯拉夫卢布尔雅那肿瘤研究所医学中心大学的286个数据集,其中包括2个类,201个无复发事件类,85个复发事件类和10个包含类的属性。用于乳腺癌分类的算法是多层感知器(Multilayer Perceptron)算法,从10次交叉验证到8次交叉验证,准确率达到96.5%,高评价达到69.93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信