Configuration Tuning for Distributed IoT Message Systems Using Deep Reinforcement Learning: Poster Abstract

Zhuangwei Kang, Yogesh D. Barve, S. Bao, A. Dubey, A. Gokhale
{"title":"Configuration Tuning for Distributed IoT Message Systems Using Deep Reinforcement Learning: Poster Abstract","authors":"Zhuangwei Kang, Yogesh D. Barve, S. Bao, A. Dubey, A. Gokhale","doi":"10.1145/3450268.3453517","DOIUrl":null,"url":null,"abstract":"Distributed messaging systems (DMSs) are often equipped with a large number of configurable parameters that enable users to define application run-time behaviors and information dissemination rules. However, the resulting high-dimensional configuration space makes it difficult for users to determine the best configuration that can maximize application QoS under a variety of operational conditions. This poster introduces a novel, automatic knob tuning framework called DMSConfig. DMSConfig explores the configuration space by interacting with a data-driven environment prediction model(a DMS simulator), which eliminates the prohibitive cost of conducting online interactions with the production environment. DMSConfig employs the deep deterministic policy gradient (DDPG) method and a custom reward mechanism to learn and make configuration decisions based on predicted DMS states and performance. Our initial experimental results, conducted on a single-broker Kafka cluster, show that DMSConfig significantly outperforms the default configuration and has better adaptability to CPU and bandwidth-limited environments. We also confirm that DMSConfig produces fewer violations of latency constraints than three prevalent parameter tuning tools.","PeriodicalId":130134,"journal":{"name":"Proceedings of the International Conference on Internet-of-Things Design and Implementation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Internet-of-Things Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3450268.3453517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Distributed messaging systems (DMSs) are often equipped with a large number of configurable parameters that enable users to define application run-time behaviors and information dissemination rules. However, the resulting high-dimensional configuration space makes it difficult for users to determine the best configuration that can maximize application QoS under a variety of operational conditions. This poster introduces a novel, automatic knob tuning framework called DMSConfig. DMSConfig explores the configuration space by interacting with a data-driven environment prediction model(a DMS simulator), which eliminates the prohibitive cost of conducting online interactions with the production environment. DMSConfig employs the deep deterministic policy gradient (DDPG) method and a custom reward mechanism to learn and make configuration decisions based on predicted DMS states and performance. Our initial experimental results, conducted on a single-broker Kafka cluster, show that DMSConfig significantly outperforms the default configuration and has better adaptability to CPU and bandwidth-limited environments. We also confirm that DMSConfig produces fewer violations of latency constraints than three prevalent parameter tuning tools.
使用深度强化学习的分布式物联网消息系统配置调优:海报摘要
分布式消息传递系统(dms)通常配备了大量可配置参数,使用户能够定义应用程序运行时行为和信息传播规则。然而,由此产生的高维配置空间使得用户难以确定在各种操作条件下可以最大化应用QoS的最佳配置。这张海报介绍了一个新颖的自动旋钮调优框架DMSConfig。DMSConfig通过与数据驱动的环境预测模型(DMS模拟器)交互来探索配置空间,这消除了与生产环境进行在线交互的高昂成本。DMSConfig采用深度确定性策略梯度(deep deterministic policy gradient, DDPG)方法和自定义奖励机制,根据预测的DMS状态和性能学习并做出配置决策。我们在单代理Kafka集群上进行的初步实验结果表明,DMSConfig明显优于默认配置,并且对CPU和带宽有限的环境具有更好的适应性。我们还确认DMSConfig比三种流行的参数调优工具更少地违反延迟约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信