Zhuangwei Kang, Yogesh D. Barve, S. Bao, A. Dubey, A. Gokhale
{"title":"Configuration Tuning for Distributed IoT Message Systems Using Deep Reinforcement Learning: Poster Abstract","authors":"Zhuangwei Kang, Yogesh D. Barve, S. Bao, A. Dubey, A. Gokhale","doi":"10.1145/3450268.3453517","DOIUrl":null,"url":null,"abstract":"Distributed messaging systems (DMSs) are often equipped with a large number of configurable parameters that enable users to define application run-time behaviors and information dissemination rules. However, the resulting high-dimensional configuration space makes it difficult for users to determine the best configuration that can maximize application QoS under a variety of operational conditions. This poster introduces a novel, automatic knob tuning framework called DMSConfig. DMSConfig explores the configuration space by interacting with a data-driven environment prediction model(a DMS simulator), which eliminates the prohibitive cost of conducting online interactions with the production environment. DMSConfig employs the deep deterministic policy gradient (DDPG) method and a custom reward mechanism to learn and make configuration decisions based on predicted DMS states and performance. Our initial experimental results, conducted on a single-broker Kafka cluster, show that DMSConfig significantly outperforms the default configuration and has better adaptability to CPU and bandwidth-limited environments. We also confirm that DMSConfig produces fewer violations of latency constraints than three prevalent parameter tuning tools.","PeriodicalId":130134,"journal":{"name":"Proceedings of the International Conference on Internet-of-Things Design and Implementation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Internet-of-Things Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3450268.3453517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Distributed messaging systems (DMSs) are often equipped with a large number of configurable parameters that enable users to define application run-time behaviors and information dissemination rules. However, the resulting high-dimensional configuration space makes it difficult for users to determine the best configuration that can maximize application QoS under a variety of operational conditions. This poster introduces a novel, automatic knob tuning framework called DMSConfig. DMSConfig explores the configuration space by interacting with a data-driven environment prediction model(a DMS simulator), which eliminates the prohibitive cost of conducting online interactions with the production environment. DMSConfig employs the deep deterministic policy gradient (DDPG) method and a custom reward mechanism to learn and make configuration decisions based on predicted DMS states and performance. Our initial experimental results, conducted on a single-broker Kafka cluster, show that DMSConfig significantly outperforms the default configuration and has better adaptability to CPU and bandwidth-limited environments. We also confirm that DMSConfig produces fewer violations of latency constraints than three prevalent parameter tuning tools.