In-Depth Parametric Study of Ar or N2 Plasma Activated Cu Surfaces for Cu-Cu Direct Bonding

Liangxing Hu, S. Goh, J. Tao, Y. Lim, P. Zhao, Michael Joo Zhong Lim, C. S. Tan
{"title":"In-Depth Parametric Study of Ar or N2 Plasma Activated Cu Surfaces for Cu-Cu Direct Bonding","authors":"Liangxing Hu, S. Goh, J. Tao, Y. Lim, P. Zhao, Michael Joo Zhong Lim, C. S. Tan","doi":"10.1109/ECTC32696.2021.00077","DOIUrl":null,"url":null,"abstract":"In this article, we report in-depth parametric study of argon/nitrogen plasma-activated copper surfaces for copper-copper die-to-die direct bonding carried out at room temperature in cleanroom ambient condition. Surface analyses (e.g. water contact angle and X-ray photoelectron spectroscopy) are performed on the control, argon or nitrogen plasma-activated copper surfaces. The results reveal that a thin layer of copper nitride is formed on the copper surface with the nitrogen plasma treatment, which is a potentially effective passivation layer to control the surface oxidation. By fine-tuning the argon or nitrogen plasma (exposure time, plasma power and plasma species), a bonding strength of ∼6 MPa is achieved, and the bonded interface has a specific contact resistivity of $\\sim 6.0\\times 10^{-4}\\ \\Omega \\cdot \\text{cm}^{2}$. Therefore, an optimal plasma recipe is obtained for argon/nitrogen plasma-activated copper-copper direct bonding. This bonding technique is suitable for high-throughput three-dimensional wafer bonding and advanced packaging.","PeriodicalId":351817,"journal":{"name":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC32696.2021.00077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this article, we report in-depth parametric study of argon/nitrogen plasma-activated copper surfaces for copper-copper die-to-die direct bonding carried out at room temperature in cleanroom ambient condition. Surface analyses (e.g. water contact angle and X-ray photoelectron spectroscopy) are performed on the control, argon or nitrogen plasma-activated copper surfaces. The results reveal that a thin layer of copper nitride is formed on the copper surface with the nitrogen plasma treatment, which is a potentially effective passivation layer to control the surface oxidation. By fine-tuning the argon or nitrogen plasma (exposure time, plasma power and plasma species), a bonding strength of ∼6 MPa is achieved, and the bonded interface has a specific contact resistivity of $\sim 6.0\times 10^{-4}\ \Omega \cdot \text{cm}^{2}$. Therefore, an optimal plasma recipe is obtained for argon/nitrogen plasma-activated copper-copper direct bonding. This bonding technique is suitable for high-throughput three-dimensional wafer bonding and advanced packaging.
Ar或N2等离子体活化Cu表面用于Cu-Cu直接键合的深入参数研究
在本文中,我们报告了在洁净室环境条件下,在室温下对氩/氮等离子体活化铜表面进行铜-铜模对模直接键合的深入参数研究。表面分析(如水接触角和x射线光电子能谱)进行控制,氩或氮等离子体活化的铜表面。结果表明,氮等离子体处理在铜表面形成了一层薄薄的氮化铜层,这是一种潜在的有效的钝化层,可以控制表面氧化。通过对氩或氮等离子体(曝光时间、等离子体功率和等离子体种类)进行微调,可以实现~ 6 MPa的结合强度,结合界面的比接触电阻率为$\sim 6.0\times 10^{-4}\ \Omega \cdot \text{cm}^{2}$。因此,获得了氩/氮等离子体激活铜-铜直接键合的最佳等离子体配方。该键合技术适用于高通量三维晶圆键合和先进封装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信