Achievable rate regions for asynchronous Slepian-Wolf coding systems

Tetsunao Matsuta, T. Uyematsu
{"title":"Achievable rate regions for asynchronous Slepian-Wolf coding systems","authors":"Tetsunao Matsuta, T. Uyematsu","doi":"10.1109/ITWF.2015.7360786","DOIUrl":null,"url":null,"abstract":"The Slepian-Wolf (SW) coding system is a source coding system with two encoders and a decoder, where these encoders independently encode input sequences emitted from two correlated sources into fixed-length codewords, and the decoder reconstructs all input sequences from the codewords. In this paper, we consider the situation in which the SW coding system is asynchronous, i.e., each encoder runs with each delay from the base time. We assume that these delays are unknown to encoders and a decoder, but the maximum of delays is known to encoders and the decoder. For this asynchronous SW coding system, we clarify the achievable rate region, where the achievable rate region is the set of rate pairs of encoders such that the decoding error probability vanishes as the block length tends to infinity. Furthermore, we show an exponential bound of the error probability for this coding system by using Gallager's random coding techniques.","PeriodicalId":281890,"journal":{"name":"2015 IEEE Information Theory Workshop - Fall (ITW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop - Fall (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITWF.2015.7360786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The Slepian-Wolf (SW) coding system is a source coding system with two encoders and a decoder, where these encoders independently encode input sequences emitted from two correlated sources into fixed-length codewords, and the decoder reconstructs all input sequences from the codewords. In this paper, we consider the situation in which the SW coding system is asynchronous, i.e., each encoder runs with each delay from the base time. We assume that these delays are unknown to encoders and a decoder, but the maximum of delays is known to encoders and the decoder. For this asynchronous SW coding system, we clarify the achievable rate region, where the achievable rate region is the set of rate pairs of encoders such that the decoding error probability vanishes as the block length tends to infinity. Furthermore, we show an exponential bound of the error probability for this coding system by using Gallager's random coding techniques.
异步睡眠-狼编码系统的可实现速率区域
SW编码系统是由两个编码器和一个解码器组成的源编码系统,这些编码器独立地将两个相关源发出的输入序列编码为固定长度的码字,解码器根据码字重构所有输入序列。在本文中,我们考虑了SW编码系统是异步的情况,即每个编码器从基本时间开始每个延迟运行。我们假设这些延迟对于编码器和解码器是未知的,但是最大延迟对于编码器和解码器是已知的。对于这种异步SW编码系统,我们明确了可实现的速率区域,其中可实现的速率区域是编码器的速率对集合,使得译码错误概率随着块长度趋于无穷大而消失。此外,我们还利用Gallager随机编码技术给出了该编码系统的误差概率的指数界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信