Fuzzy Lattice Reasoning (FLR) Extensions to Lattice-Valued Logic

V. Kaburlasos
{"title":"Fuzzy Lattice Reasoning (FLR) Extensions to Lattice-Valued Logic","authors":"V. Kaburlasos","doi":"10.1109/PCi.2012.40","DOIUrl":null,"url":null,"abstract":"This work introduces the Boolean (quotient) lattice (Q<sub>I</sub>, ⊆), an element of whom is the union of countable (closed) intervals on the real line. It follows that (Q<sub>I</sub>, ∪, ∩, ') is a lattice implication algebra (LIA), the latter is an established framework for reasoning under uncertainty. It is illustrated in (Q<sub>I</sub>, ∪, ∩, ') how fuzzy lattice reasoning (FLR) techniques, for tunable decision-making, can be extended to lattice-valued logic. Potential practical applications are described.","PeriodicalId":131195,"journal":{"name":"2012 16th Panhellenic Conference on Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 16th Panhellenic Conference on Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCi.2012.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This work introduces the Boolean (quotient) lattice (QI, ⊆), an element of whom is the union of countable (closed) intervals on the real line. It follows that (QI, ∪, ∩, ') is a lattice implication algebra (LIA), the latter is an established framework for reasoning under uncertainty. It is illustrated in (QI, ∪, ∩, ') how fuzzy lattice reasoning (FLR) techniques, for tunable decision-making, can be extended to lattice-valued logic. Potential practical applications are described.
模糊格推理(FLR)在格值逻辑中的扩展
本文引入了布尔(商)格(QI,),该格的一个元素是实线上可数(闭)区间的并。由此可知(QI,∪,∩,')是一个格蕴涵代数(LIA),后者是不确定条件下推理的建立框架。在(QI,∪,∩,')中说明了用于可调决策的模糊格推理(FLR)技术是如何扩展到格值逻辑的。描述了潜在的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信