A weight-adjustable hardware accelerator board for DTCNN implementation and application

Liming Zhang, Wei Wang, K. Jiang
{"title":"A weight-adjustable hardware accelerator board for DTCNN implementation and application","authors":"Liming Zhang, Wei Wang, K. Jiang","doi":"10.1109/CNNA.1996.566564","DOIUrl":null,"url":null,"abstract":"A new method which uses only comparison and matching circuits to implement the neural net is introduced. The digital accelerator board combined with FPGA for simulating the behavior of discrete-time cellular neurons is presented in this paper. Via host computer the connected-weights can be modified in the hardware nearly arbitrarily. The network can realize various functions if the weights satisfy some conditions. The experiments show that the computation speed exceeds software implementation by 70-1000 limes. Finally, an application of feature extraction on handwritten characters recognition system shows the efficiency of the hardware with low cost.","PeriodicalId":222524,"journal":{"name":"1996 Fourth IEEE International Workshop on Cellular Neural Networks and their Applications Proceedings (CNNA-96)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 Fourth IEEE International Workshop on Cellular Neural Networks and their Applications Proceedings (CNNA-96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1996.566564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A new method which uses only comparison and matching circuits to implement the neural net is introduced. The digital accelerator board combined with FPGA for simulating the behavior of discrete-time cellular neurons is presented in this paper. Via host computer the connected-weights can be modified in the hardware nearly arbitrarily. The network can realize various functions if the weights satisfy some conditions. The experiments show that the computation speed exceeds software implementation by 70-1000 limes. Finally, an application of feature extraction on handwritten characters recognition system shows the efficiency of the hardware with low cost.
一种用于DTCNN实现与应用的可调重硬件加速板
介绍了一种只用比较和匹配电路实现神经网络的新方法。提出了一种结合FPGA的数字加速板,用于模拟离散时间细胞神经元的行为。通过上位机,可以在硬件上几乎任意地修改连接权值。在权值满足一定条件的情况下,网络可以实现各种功能。实验表明,计算速度比软件实现快70-1000倍。最后,以手写体字符识别系统为例,说明了该方法的硬件效率和低成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信