Robust expert system design for automated detection of epileptic seizures using SVM classifier

P. Swami, A. K. Godiyal, J. Santhosh, B. K. Panigrahi, M. Bhatia, S. Anand
{"title":"Robust expert system design for automated detection of epileptic seizures using SVM classifier","authors":"P. Swami, A. K. Godiyal, J. Santhosh, B. K. Panigrahi, M. Bhatia, S. Anand","doi":"10.1109/PDGC.2014.7030745","DOIUrl":null,"url":null,"abstract":"The classification of normal and ailing brain activities through visual inspection proves to be very challenging even for any experienced neurologist. The case is even worse for detection of heterogeneous anomalies like epileptic seizures. Authors have presented robust expert system design for classification of epileptic seizures automatically with an improvement over the existing systems. The developed scheme illustrates selection methodology for feeding energy, entropy and standard deviation feature sets to the support vector classifier. The results display maximum classification rate of 99.53 % with sensitivity and specificity rates above 98.8 %. These results were validated over 10 folds of sub-divisions using rotation estimation technique with minimum computation time noted to be 0.0131 s. Therefore, the expert system developed during this study holds promising grounds for automated clinical diagnosis in real time.","PeriodicalId":311953,"journal":{"name":"2014 International Conference on Parallel, Distributed and Grid Computing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Parallel, Distributed and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDGC.2014.7030745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The classification of normal and ailing brain activities through visual inspection proves to be very challenging even for any experienced neurologist. The case is even worse for detection of heterogeneous anomalies like epileptic seizures. Authors have presented robust expert system design for classification of epileptic seizures automatically with an improvement over the existing systems. The developed scheme illustrates selection methodology for feeding energy, entropy and standard deviation feature sets to the support vector classifier. The results display maximum classification rate of 99.53 % with sensitivity and specificity rates above 98.8 %. These results were validated over 10 folds of sub-divisions using rotation estimation technique with minimum computation time noted to be 0.0131 s. Therefore, the expert system developed during this study holds promising grounds for automated clinical diagnosis in real time.
基于SVM分类器的癫痫发作自动检测鲁棒专家系统设计
即使对任何有经验的神经科医生来说,通过视觉检查来分类正常和病态的大脑活动也是非常具有挑战性的。这种情况更糟糕的异质异常的检测,如癫痫发作。作者提出了鲁棒的专家系统设计,用于癫痫发作的自动分类与现有系统的改进。开发的方案说明了为支持向量分类器提供能量,熵和标准差特征集的选择方法。结果显示,最高分类率为99.53%,敏感性和特异性均在98.8%以上。使用旋转估计技术对10倍以上的细分进行验证,最小计算时间为0.0131 s。因此,在本研究中开发的专家系统为实时自动临床诊断提供了有希望的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信