{"title":"Combining Dual-Readout Crystals and Fibers in a Hybrid Calorimeter for the IDEA Experiment","authors":"M. Lucchini","doi":"10.22323/1.398.0850","DOIUrl":null,"url":null,"abstract":"Crystal calorimetry has a long history of pushing the frontier of high energy resolution measurements for electromagnetic particles. Recent technological developments in the fields of crystal manufacturing and photo-detector developments (SiPMs) have opened new perspectives on how a segmented crystal calorimeter with dual-readout capabilities can be exploited for particle detectors at future collider experiments. In particular, a cost-effective integration of such a crystal calorimeter with the fiber-based calorimeter of the IDEA detector could achieve an energy resolution of 3%/ √ for electromagnetic particles and 26%/ √ for neutral and charged hadrons. In this contribution we provide a first demonstration of how the development of a new dedicated particle flow algorithm that exploits the dual-readout information (DR-PFA) from such a calorimeter can achieve an excellent energy resolution of 4% for 50 GeV jets and 3% for 100 GeV jets. Such a resolution is comparable to that of the highest performing PFA calorimeters and enables an efficient separation of the W and Z boson dijet invariant mass, a key requirement for detectors at future e+e− colliders.","PeriodicalId":218352,"journal":{"name":"Proceedings of The European Physical Society Conference on High Energy Physics — PoS(EPS-HEP2021)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The European Physical Society Conference on High Energy Physics — PoS(EPS-HEP2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.398.0850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Crystal calorimetry has a long history of pushing the frontier of high energy resolution measurements for electromagnetic particles. Recent technological developments in the fields of crystal manufacturing and photo-detector developments (SiPMs) have opened new perspectives on how a segmented crystal calorimeter with dual-readout capabilities can be exploited for particle detectors at future collider experiments. In particular, a cost-effective integration of such a crystal calorimeter with the fiber-based calorimeter of the IDEA detector could achieve an energy resolution of 3%/ √ for electromagnetic particles and 26%/ √ for neutral and charged hadrons. In this contribution we provide a first demonstration of how the development of a new dedicated particle flow algorithm that exploits the dual-readout information (DR-PFA) from such a calorimeter can achieve an excellent energy resolution of 4% for 50 GeV jets and 3% for 100 GeV jets. Such a resolution is comparable to that of the highest performing PFA calorimeters and enables an efficient separation of the W and Z boson dijet invariant mass, a key requirement for detectors at future e+e− colliders.