High-Performance Computation of LGCA Fluid Dynamics on an FPGA-Based Platform

Changdao Du, Iman Firmansyah, Y. Yamaguchi
{"title":"High-Performance Computation of LGCA Fluid Dynamics on an FPGA-Based Platform","authors":"Changdao Du, Iman Firmansyah, Y. Yamaguchi","doi":"10.1109/ICCCS49078.2020.9118557","DOIUrl":null,"url":null,"abstract":"Lattice Gas Cellular Automata (LGCA) simulations are typical High-Performance Computing (HPC) applications commonly used to simulate fluid flows. Due to the computational locality and discretization of LGCA, these simulations can achieve high performance by using parallel computing devices like GPUs or multi-core CPUs. Nevertheless, many studies also have shown that state-of-the-art Field Programmable Gate Arrays (FPGAs) have enormous parallel computing potential and power-efficient for high-performance computations. In this paper, we present an FPGA-based fluid simulation architecture design for the LGCA method. Our design exploits both temporal and spatial parallelism inside the LGCA algorithm to scale up the performance on FPGA. We also propose an application-specific cache structure to overcome the memory bandwidth bottleneck. Furthermore, our development process is based on the High-Level Synthesis (HLS) approach that increases productivity. Experimental results on a Xilinx Vcu 1525 FPGA show that our design is able to achieve 17130.2 Million Lattice Updates Per Second (MLUPS).","PeriodicalId":105556,"journal":{"name":"2020 5th International Conference on Computer and Communication Systems (ICCCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS49078.2020.9118557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lattice Gas Cellular Automata (LGCA) simulations are typical High-Performance Computing (HPC) applications commonly used to simulate fluid flows. Due to the computational locality and discretization of LGCA, these simulations can achieve high performance by using parallel computing devices like GPUs or multi-core CPUs. Nevertheless, many studies also have shown that state-of-the-art Field Programmable Gate Arrays (FPGAs) have enormous parallel computing potential and power-efficient for high-performance computations. In this paper, we present an FPGA-based fluid simulation architecture design for the LGCA method. Our design exploits both temporal and spatial parallelism inside the LGCA algorithm to scale up the performance on FPGA. We also propose an application-specific cache structure to overcome the memory bandwidth bottleneck. Furthermore, our development process is based on the High-Level Synthesis (HLS) approach that increases productivity. Experimental results on a Xilinx Vcu 1525 FPGA show that our design is able to achieve 17130.2 Million Lattice Updates Per Second (MLUPS).
基于fpga平台的LGCA流体动力学高性能计算
晶格气体元胞自动机(LGCA)模拟是典型的高性能计算(HPC)应用,通常用于模拟流体流动。由于LGCA的计算局部性和离散性,这些模拟可以通过使用gpu或多核cpu等并行计算设备来实现高性能。然而,许多研究也表明,最先进的现场可编程门阵列(fpga)具有巨大的并行计算潜力和高效能的高性能计算。本文提出了一种基于fpga的LGCA方法流体仿真体系结构设计。我们的设计利用LGCA算法内的时间和空间并行性来扩展FPGA上的性能。我们还提出了一种特定于应用程序的缓存结构来克服内存带宽瓶颈。此外,我们的开发过程是基于提高生产力的高级综合(HLS)方法。在Xilinx Vcu 1525 FPGA上的实验结果表明,我们的设计能够达到每秒17130.2亿次晶格更新(MLUPS)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信