Application of genetic algorithms in EKF for speed estimation of an induction motor

Li Cai, Yinhai Zhang, Zhongchao Zhang, Chenyang Liu, Zheng-yu Lu
{"title":"Application of genetic algorithms in EKF for speed estimation of an induction motor","authors":"Li Cai, Yinhai Zhang, Zhongchao Zhang, Chenyang Liu, Zheng-yu Lu","doi":"10.1109/PESC.2003.1218317","DOIUrl":null,"url":null,"abstract":"Genetic algorithm (GA) is applied in this paper to optimize parameters of the extended Kalman filter (EKF) in a speed-senserless field-oriented controller (FOC) system. The main parameters of EKF are the covariance matrics Q and R, which are bound respectively to the state and measurement noises. As for speed-sensorless FOC system, the convergence and precision of both rotor speed and flux estimation depend on the accuracy of the models of system noise and measurement noise, i.e. Q and R. A GA training simulation system of optimum parameters of EKF is given and the simulation results show the efficiency and rationality of the algorithm.","PeriodicalId":236199,"journal":{"name":"IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESC.2003.1218317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Genetic algorithm (GA) is applied in this paper to optimize parameters of the extended Kalman filter (EKF) in a speed-senserless field-oriented controller (FOC) system. The main parameters of EKF are the covariance matrics Q and R, which are bound respectively to the state and measurement noises. As for speed-sensorless FOC system, the convergence and precision of both rotor speed and flux estimation depend on the accuracy of the models of system noise and measurement noise, i.e. Q and R. A GA training simulation system of optimum parameters of EKF is given and the simulation results show the efficiency and rationality of the algorithm.
遗传算法在异步电动机速度估计中的应用
本文将遗传算法应用于无速度传感器场定向控制器(FOC)系统中扩展卡尔曼滤波器(EKF)的参数优化。EKF的主要参数是协方差矩阵Q和R,它们分别与状态噪声和测量噪声绑定。对于无速度传感器FOC系统,转子转速和磁链估计的收敛性和精度取决于系统噪声和测量噪声(Q和r)模型的准确性,给出了EKF最优参数的GA训练仿真系统,仿真结果表明了该算法的有效性和合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信