HESS-Based Bi-Directional DC-DC Converter with Adaptive Control Strategy

Srinivas Punna, Sujatha Banka, Kavya Swamy, K. Keerthi Krishna, P. Sreeja Sree, D. Tharuni
{"title":"HESS-Based Bi-Directional DC-DC Converter with Adaptive Control Strategy","authors":"Srinivas Punna, Sujatha Banka, Kavya Swamy, K. Keerthi Krishna, P. Sreeja Sree, D. Tharuni","doi":"10.1109/SeFeT55524.2022.9909383","DOIUrl":null,"url":null,"abstract":"In systems like electric/hybrid vehicles and islanded DC microgrids, hybrid energy storage system (HESS) technologies are employed to augment the batteries. In case of a DC microgrid, the flow of energy between the source and the load must be balanced so as to take care of a relentless DC grid voltage. Energy storage is utilized to balance out any imbalances between the source and the load. To control the imbalance power, supercapacitor and battery-based combination storage is the best solution among all hybrid energy storage systems. This paper presents the HESS modelling, design of bidirectional converter, controller design, stability analysis and simulation as well as experimental findings for a step change in PV generation and load demand are presented. The outcomes of the study of the conventional control scheme along with the proposed control scheme were included.","PeriodicalId":262863,"journal":{"name":"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SeFeT55524.2022.9909383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In systems like electric/hybrid vehicles and islanded DC microgrids, hybrid energy storage system (HESS) technologies are employed to augment the batteries. In case of a DC microgrid, the flow of energy between the source and the load must be balanced so as to take care of a relentless DC grid voltage. Energy storage is utilized to balance out any imbalances between the source and the load. To control the imbalance power, supercapacitor and battery-based combination storage is the best solution among all hybrid energy storage systems. This paper presents the HESS modelling, design of bidirectional converter, controller design, stability analysis and simulation as well as experimental findings for a step change in PV generation and load demand are presented. The outcomes of the study of the conventional control scheme along with the proposed control scheme were included.
基于hess的双向DC-DC变换器及其自适应控制策略
在电动/混合动力汽车和孤岛直流微电网等系统中,混合储能系统(HESS)技术被用于增强电池。在直流微电网的情况下,必须平衡源和负载之间的能量流,以照顾一个无情的直流电网电压。能量储存被用来平衡源和负载之间的任何不平衡。在所有混合储能系统中,以超级电容器和电池为基础的组合储能是控制功率不平衡的最佳方案。本文介绍了HESS的建模、双向变换器的设计、控制器的设计、稳定性分析和仿真,以及光伏发电和负荷需求阶跃变化的实验结果。包括传统控制方案的研究结果以及所提出的控制方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信