DepAudioNet: An Efficient Deep Model for Audio based Depression Classification

Xingchen Ma, Hongyu Yang, Qiang Chen, Di Huang, Yunhong Wang
{"title":"DepAudioNet: An Efficient Deep Model for Audio based Depression Classification","authors":"Xingchen Ma, Hongyu Yang, Qiang Chen, Di Huang, Yunhong Wang","doi":"10.1145/2988257.2988267","DOIUrl":null,"url":null,"abstract":"This paper presents a novel and effective audio based method on depression classification. It focuses on two important issues, \\emph{i.e.} data representation and sample imbalance, which are not well addressed in literature. For the former one, in contrast to traditional shallow hand-crafted features, we propose a deep model, namely DepAudioNet, to encode the depression related characteristics in the vocal channel, combining Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) to deliver a more comprehensive audio representation. For the latter one, we introduce a random sampling strategy in the model training phase to balance the positive and negative samples, which largely alleviates the bias caused by uneven sample distribution. Evaluations are carried out on the DAIC-WOZ dataset for the Depression Classification Sub-challenge (DCC) at the 2016 Audio-Visual Emotion Challenge (AVEC), and the experimental results achieved clearly demonstrate the effectiveness of the proposed approach.","PeriodicalId":432793,"journal":{"name":"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"185","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2988257.2988267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 185

Abstract

This paper presents a novel and effective audio based method on depression classification. It focuses on two important issues, \emph{i.e.} data representation and sample imbalance, which are not well addressed in literature. For the former one, in contrast to traditional shallow hand-crafted features, we propose a deep model, namely DepAudioNet, to encode the depression related characteristics in the vocal channel, combining Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) to deliver a more comprehensive audio representation. For the latter one, we introduce a random sampling strategy in the model training phase to balance the positive and negative samples, which largely alleviates the bias caused by uneven sample distribution. Evaluations are carried out on the DAIC-WOZ dataset for the Depression Classification Sub-challenge (DCC) at the 2016 Audio-Visual Emotion Challenge (AVEC), and the experimental results achieved clearly demonstrate the effectiveness of the proposed approach.
DepAudioNet:一种高效的基于音频压抑分类的深度模型
提出了一种新颖有效的基于音频的抑郁症分类方法。它侧重于两个重要问题,\emph{即}数据表示和样本失衡,这在文献中没有很好地解决。对于前者,与传统的浅层手工特征相比,我们提出了一种深度模型DepAudioNet,将卷积神经网络(CNN)和长短期记忆(LSTM)相结合,对声音通道中与抑郁相关的特征进行编码,以提供更全面的音频表示。对于后者,我们在模型训练阶段引入随机抽样策略,平衡正负样本,很大程度上缓解了样本分布不均匀造成的偏差。在2016视听情感挑战赛(AVEC)抑郁分类子挑战(DCC)的DAIC-WOZ数据集上进行了评估,实验结果清楚地证明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信