Tăng tốc độ phát hiện dị thường trên ảnh đa phổ và siêu phổ ứng dụng trong tìm kiếm cứu nạn

N. Phượng, Đào Khánh Hoài, Tống Minh Đức
{"title":"Tăng tốc độ phát hiện dị thường trên ảnh đa phổ và siêu phổ ứng dụng trong tìm kiếm cứu nạn","authors":"N. Phượng, Đào Khánh Hoài, Tống Minh Đức","doi":"10.32913/mic-ict-research-vn.v2019.n2.866","DOIUrl":null,"url":null,"abstract":"Máy dò dị thường do Reed và Yu đề xuất được công nhận là máy chuẩn để phát hiện dị thường trên ảnh đa phổ và siêu phổ. Tuy nhiên, máy này có một số hạn chế: dữ liệu ảnh phải tuân theo mô hình Gauss đa biến, tính toán nghịch đảo của ma trận hiệp phương sai rất phức tạp khi ảnh nền có kích thước lớn, hoạt động thiếu ổn định, đôi khi có tỉ lệ báo động giả cao, thiếu mối liên hệ không gian giữa các điểm ảnh. Quy tắc quyết định Neyman-Pearson thường được sử dụng dựa trên việc tính toán hàm mật độ xác suất phi tham số của dữ liệu nền để nâng cao hiệu suất và độ tin cậy, nhưng lại có độ phức tạp tính toán cao. Để giảm độ phức tạp tính toán và thời gian tính toán, nhiều phương pháp đã được sử dụng, như: biến đổi Fourier nhanh, biến đổi Gauss nhanh, lập trình đa luồng trên bộ xử lý trung tâm (CPU), song song trên bộ xử lý đồ họa (GPU). Bài báo này trình bày một phương pháp ước lượng nhanh hàm mật độ xác suất bằng cách phân nhóm các điểm ảnh trên miền giá trị và tổ chức dữ liệu trên cây Kd-tree. Kết quả kiểm nghiệm cho thấy phương pháp đề xuất vượt trội các phương pháp khác và có thể ứng dụng trong thực tế.","PeriodicalId":432355,"journal":{"name":"Research and Development on Information and Communication Technology","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research and Development on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32913/mic-ict-research-vn.v2019.n2.866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Máy dò dị thường do Reed và Yu đề xuất được công nhận là máy chuẩn để phát hiện dị thường trên ảnh đa phổ và siêu phổ. Tuy nhiên, máy này có một số hạn chế: dữ liệu ảnh phải tuân theo mô hình Gauss đa biến, tính toán nghịch đảo của ma trận hiệp phương sai rất phức tạp khi ảnh nền có kích thước lớn, hoạt động thiếu ổn định, đôi khi có tỉ lệ báo động giả cao, thiếu mối liên hệ không gian giữa các điểm ảnh. Quy tắc quyết định Neyman-Pearson thường được sử dụng dựa trên việc tính toán hàm mật độ xác suất phi tham số của dữ liệu nền để nâng cao hiệu suất và độ tin cậy, nhưng lại có độ phức tạp tính toán cao. Để giảm độ phức tạp tính toán và thời gian tính toán, nhiều phương pháp đã được sử dụng, như: biến đổi Fourier nhanh, biến đổi Gauss nhanh, lập trình đa luồng trên bộ xử lý trung tâm (CPU), song song trên bộ xử lý đồ họa (GPU). Bài báo này trình bày một phương pháp ước lượng nhanh hàm mật độ xác suất bằng cách phân nhóm các điểm ảnh trên miền giá trị và tổ chức dữ liệu trên cây Kd-tree. Kết quả kiểm nghiệm cho thấy phương pháp đề xuất vượt trội các phương pháp khác và có thể ứng dụng trong thực tế.
提高多光谱和超光谱图像异常检测速度,应用于搜救
Reed和Yu提出的异常探测器被认为是多光谱和超光谱图像异常检测的标准仪器。然而,这台机器有一些限制:图像数据必须遵循多变量高斯模型,离散误差矩阵的逆运算非常复杂,当背景图像尺寸较大时,操作不稳定,有时会出现高的假警报率,像素之间缺乏空间关系。Neyman-Pearson决策规则通常是基于对背景数据的非参数概率密度的计算,以提高性能和可靠性,但有高度的计算复杂性。为了减少计算复杂性和计算时间,已经使用了许多方法,如快速傅里叶变换、快速高斯变换、中央处理器上的多流编程,以及图形处理器上的并行编程。本文提出了一种快速估计概率密度的方法,方法是将像素在值域中分割,并在Kd-tree上组织数据。试验结果表明,提出的方法优于其他方法,可以在实践中应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信