Finite element approximate inverse preconditioning using POSIX threads on multicore systems

G. Gravvanis, P. I. Matskanidis, K. M. Giannoutakis, E. A. Lipitakis
{"title":"Finite element approximate inverse preconditioning using POSIX threads on multicore systems","authors":"G. Gravvanis, P. I. Matskanidis, K. M. Giannoutakis, E. A. Lipitakis","doi":"10.1109/IMCSIT.2010.5679955","DOIUrl":null,"url":null,"abstract":"Explicit finite element approximate inverse preconditioning methods have been extensively used for solving efficiently sparse linear systems on multiprocessor and multicomputer systems. New parallel computational techniques are proposed for the parallelization of explicit preconditioned biconjugate conjugate gradient type methods, based on Portable Operating System Interface for UniX (POSIX) Threads, for multicore systems. Parallelization is achieved by assigning every loop of the parallel explicit preconditioned bi-conjugate conjugate gradient-STAB (PEPBiCG-STAB) to the desired number of threads, thus achieving for-loop parallelization. Theoretical estimates on speedups and efficiency are also presented. Finally, numerical results for the performance of the PEPBiCG-STAB method for solving characteristic two dimensional boundary value problems on multicore computer systems are presented, which are favorably compared to corresponding results from multiprocessor systems. The implementation issues of the proposed method are also discussed using POSIX Threads on a multicore system.","PeriodicalId":147803,"journal":{"name":"Proceedings of the International Multiconference on Computer Science and Information Technology","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Multiconference on Computer Science and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCSIT.2010.5679955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Explicit finite element approximate inverse preconditioning methods have been extensively used for solving efficiently sparse linear systems on multiprocessor and multicomputer systems. New parallel computational techniques are proposed for the parallelization of explicit preconditioned biconjugate conjugate gradient type methods, based on Portable Operating System Interface for UniX (POSIX) Threads, for multicore systems. Parallelization is achieved by assigning every loop of the parallel explicit preconditioned bi-conjugate conjugate gradient-STAB (PEPBiCG-STAB) to the desired number of threads, thus achieving for-loop parallelization. Theoretical estimates on speedups and efficiency are also presented. Finally, numerical results for the performance of the PEPBiCG-STAB method for solving characteristic two dimensional boundary value problems on multicore computer systems are presented, which are favorably compared to corresponding results from multiprocessor systems. The implementation issues of the proposed method are also discussed using POSIX Threads on a multicore system.
在多核系统上使用POSIX线程的有限元近似逆预处理
显式有限元近似逆预处理方法已广泛应用于求解多处理机和多计算机系统上的稀疏线性系统。针对多核系统,提出了基于POSIX线程的显式预条件双共轭共轭梯度型方法并行化的新并行计算技术。并行化是通过将并行显式预条件双共轭共轭梯度- stab (pepbic - stab)的每个循环分配给所需的线程数来实现的,从而实现for循环并行化。对加速和效率也给出了理论估计。最后,给出了在多核计算机系统上求解特征二维边值问题的PEPBiCG-STAB方法的数值结果,并与多处理器系统的结果进行了比较。本文还讨论了在多核系统上使用POSIX线程实现该方法的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信