Identification and Analysis of Alzheimer’s Disease using DenseNet Architecture with Minimum Path Length Between Input and Output Layers

D. Deepa, M. S. Raj, S. Gowthami, K. Hemalatha, C. Poongodi, P. Thangavel
{"title":"Identification and Analysis of Alzheimer’s Disease using DenseNet Architecture with Minimum Path Length Between Input and Output Layers","authors":"D. Deepa, M. S. Raj, S. Gowthami, K. Hemalatha, C. Poongodi, P. Thangavel","doi":"10.1109/STCR55312.2022.10009552","DOIUrl":null,"url":null,"abstract":"Alzheimer’s Disease is a neurological brain disorder that damages the cells in brain and reduce the ability of the brain from the regular activities. It is a representation of the most common form of adult-onset dementias. Earlier detection of Alzheimer’s disease can be more helpful in predetermining the symptomatic conditions of patients suffering with this problem. By diagnosing the consequences of this disease, with the help of medical scan images, it would be more useful in classifying the patients whether they are suffering from this deadly disease. Machine Learning tends to be more beneficial in diagnosing diseases and implementation of this technique, to Magnetic Resonance Imaging (MRI) inputs in identification of Alzheimer’s disease, resulted in faster prediction of the disease and in the contribution of the evolution of the disease. Carrying out this technique, it is possible to diagnose and predict the individual dementia of adults by screening data of Alzheimer’s disease and inducing Machine Learning classifiers. This work focuses on building an evolving framework to detect Alzheimer’s disease efficiently with the help of neuroimaging technologies and prediction at a very earlier stage by using the data stacked up for Alzheimer’s disease patients.","PeriodicalId":338691,"journal":{"name":"2022 Smart Technologies, Communication and Robotics (STCR)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Smart Technologies, Communication and Robotics (STCR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STCR55312.2022.10009552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer’s Disease is a neurological brain disorder that damages the cells in brain and reduce the ability of the brain from the regular activities. It is a representation of the most common form of adult-onset dementias. Earlier detection of Alzheimer’s disease can be more helpful in predetermining the symptomatic conditions of patients suffering with this problem. By diagnosing the consequences of this disease, with the help of medical scan images, it would be more useful in classifying the patients whether they are suffering from this deadly disease. Machine Learning tends to be more beneficial in diagnosing diseases and implementation of this technique, to Magnetic Resonance Imaging (MRI) inputs in identification of Alzheimer’s disease, resulted in faster prediction of the disease and in the contribution of the evolution of the disease. Carrying out this technique, it is possible to diagnose and predict the individual dementia of adults by screening data of Alzheimer’s disease and inducing Machine Learning classifiers. This work focuses on building an evolving framework to detect Alzheimer’s disease efficiently with the help of neuroimaging technologies and prediction at a very earlier stage by using the data stacked up for Alzheimer’s disease patients.
基于输入和输出层之间最小路径长度的密集网结构的阿尔茨海默病识别与分析
阿尔茨海默病是一种大脑神经系统疾病,它损害大脑细胞,降低大脑正常活动的能力。这是成人痴呆最常见的表现形式。阿尔茨海默病的早期检测可以更有助于预先确定患有这种疾病的患者的症状。在医学扫描图像的帮助下,通过诊断这种疾病的后果,将更有助于对患者是否患有这种致命疾病进行分类。机器学习往往更有利于疾病的诊断和该技术的实施,对于识别阿尔茨海默病的磁共振成像(MRI)输入,导致更快的疾病预测和疾病进化的贡献。实施这项技术,可以通过筛选阿尔茨海默病的数据和诱导机器学习分类器来诊断和预测成人的个体痴呆。这项工作的重点是建立一个不断发展的框架,在神经成像技术的帮助下有效地检测阿尔茨海默病,并利用阿尔茨海默病患者的数据在早期阶段进行预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信