Distributed Trust-Region Method With First Order Models

Aleksandar Armacki, D. Jakovetić, N. Krejić, N. K. Jerinkić
{"title":"Distributed Trust-Region Method With First Order Models","authors":"Aleksandar Armacki, D. Jakovetić, N. Krejić, N. K. Jerinkić","doi":"10.1109/EUROCON.2019.8861739","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the trust region concept for distributed optimization. A large class of globally convergent methods of this type is used efficiently in centralized optimization, both constrained and unconstrained. The methods of this class are built on the idea of modeling the objective function at each iteration and taking the new iteration as the minimizer of the model in a certain area, called the trust region. The trust region size, the minimization method and the model function depend on the properties of the objective function. In this paper we propose a general framework and concentrate on the first order methods, i.e., the gradient methods. Using the trust-region mechanism for generating the step size we end up with a fully distributed method with node varying step sizes. Numerical results presented in the paper demonstrate the efficiency of the proposed approach.","PeriodicalId":232097,"journal":{"name":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON.2019.8861739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we introduce the trust region concept for distributed optimization. A large class of globally convergent methods of this type is used efficiently in centralized optimization, both constrained and unconstrained. The methods of this class are built on the idea of modeling the objective function at each iteration and taking the new iteration as the minimizer of the model in a certain area, called the trust region. The trust region size, the minimization method and the model function depend on the properties of the objective function. In this paper we propose a general framework and concentrate on the first order methods, i.e., the gradient methods. Using the trust-region mechanism for generating the step size we end up with a fully distributed method with node varying step sizes. Numerical results presented in the paper demonstrate the efficiency of the proposed approach.
一阶模型的分布式可信域方法
本文引入了分布式优化的信任域概念。大量的全局收敛方法被有效地用于集中优化,包括有约束的和无约束的。该类方法是建立在每次迭代对目标函数建模的思想上,并将新迭代作为模型在一定区域(称为信任区域)内的最小值。信任域的大小、最小化方法和模型函数取决于目标函数的性质。在本文中,我们提出了一个一般框架,并集中讨论了一阶方法,即梯度方法。使用信任区域机制生成步长,我们最终得到一个节点步长变化的完全分布式方法。文中给出的数值结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信