Classification of hand direction using multi-channel electromyography by neural network

N. Ma, D.K. Kumar, N. Pah
{"title":"Classification of hand direction using multi-channel electromyography by neural network","authors":"N. Ma, D.K. Kumar, N. Pah","doi":"10.1109/ANZIIS.2001.974113","DOIUrl":null,"url":null,"abstract":"Muscles are responsible for movement of the limbs. Muscle contraction is accompanied by electrical activity that is measurable and is the electromyography (EMG) recording. Due to the complex nature of the signal, detailed analysis and classification is often difficult, especially if the EMG relates to movement. This paper reports the research to determine features of the multi-channel EMG signal recording that correlate with the movement of the hand of the subjects. Different processing techniques are reported. It demonstrates integral of the RMS of the signal correlates best with the movement.","PeriodicalId":383878,"journal":{"name":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZIIS.2001.974113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Muscles are responsible for movement of the limbs. Muscle contraction is accompanied by electrical activity that is measurable and is the electromyography (EMG) recording. Due to the complex nature of the signal, detailed analysis and classification is often difficult, especially if the EMG relates to movement. This paper reports the research to determine features of the multi-channel EMG signal recording that correlate with the movement of the hand of the subjects. Different processing techniques are reported. It demonstrates integral of the RMS of the signal correlates best with the movement.
基于神经网络的多通道肌电图手部方向分类
肌肉负责四肢的运动。肌肉收缩伴随着可测量的电活动,是肌电图(EMG)记录。由于信号的复杂性,详细的分析和分类往往是困难的,特别是当肌电图与运动有关时。本文报道了确定与受试者手部运动相关的多通道肌电信号记录特征的研究。报道了不同的处理技术。结果表明,信号均方根的积分与运动的相关性最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信