Simulation and Analysis of Methylammonium Lead Iodide (CH3NH3PbI3) Perovskite Solar Cell with Au Contact Using SCAPS 1D Simulator

Ali Husainat, W. Ali, P. Cofie, J. Attia, John H. Fuller
{"title":"Simulation and Analysis of Methylammonium Lead Iodide (CH3NH3PbI3) Perovskite Solar Cell with Au Contact Using SCAPS 1D Simulator","authors":"Ali Husainat, W. Ali, P. Cofie, J. Attia, John H. Fuller","doi":"10.11648/J.AJOP.20190702.12","DOIUrl":null,"url":null,"abstract":"Hybrid organic-inorganic perovskite solar cells have attracted the attention of researchers and scientists throughout the world. From 2009, when actual research work began on photovoltaic perovskite applications, a lab power conversion efficiency above 23.3% have been achieved. Whereas, silicon solar cells have only achieved power conversion efficiencies around 17.5% in both residential and commercial applications. A typical perovskite solar cell consists of 6 main layers of different materials: a glass layer, a thin layer of fluorine-doped tin oxide substrate (FTO), an electron transport layer of TiO2, a perovskite active layer known as methylammonium lead iodide (CH3NH3PbI3), a hole transport layer of Spiro-Ometad, and a gold (Au) electrode. This paper summarizes the research that focused on the selective use of the perovskite solar cell’s composite materials, specifically, the Spiro-Ometad layer, the methylammonium lead iodide layer (CH3NH3PbI3), and the TiO2 layer with a variation of the thickness of the perovskite layer. Initial simulation results show a power conversion efficiency of 20.34% when using a gold (Au) electrode. Further research is needed, in which new technology for device fabrication will create homogeneous thin-film layers that will be tested for increased efficiency.","PeriodicalId":246919,"journal":{"name":"American Journal of Optics and Photonics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Optics and Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJOP.20190702.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

Hybrid organic-inorganic perovskite solar cells have attracted the attention of researchers and scientists throughout the world. From 2009, when actual research work began on photovoltaic perovskite applications, a lab power conversion efficiency above 23.3% have been achieved. Whereas, silicon solar cells have only achieved power conversion efficiencies around 17.5% in both residential and commercial applications. A typical perovskite solar cell consists of 6 main layers of different materials: a glass layer, a thin layer of fluorine-doped tin oxide substrate (FTO), an electron transport layer of TiO2, a perovskite active layer known as methylammonium lead iodide (CH3NH3PbI3), a hole transport layer of Spiro-Ometad, and a gold (Au) electrode. This paper summarizes the research that focused on the selective use of the perovskite solar cell’s composite materials, specifically, the Spiro-Ometad layer, the methylammonium lead iodide layer (CH3NH3PbI3), and the TiO2 layer with a variation of the thickness of the perovskite layer. Initial simulation results show a power conversion efficiency of 20.34% when using a gold (Au) electrode. Further research is needed, in which new technology for device fabrication will create homogeneous thin-film layers that will be tested for increased efficiency.
基于SCAPS 1D模拟器的Au接触甲基碘化铅(CH3NH3PbI3)钙钛矿太阳能电池的模拟与分析
有机-无机钙钛矿混合太阳能电池已经引起了世界各国研究人员和科学家的关注。从2009年光伏钙钛矿应用的实际研究工作开始,实验室功率转换效率达到了23.3%以上。然而,硅太阳能电池在住宅和商业应用中仅实现了约17.5%的能量转换效率。典型的钙钛矿太阳能电池主要由6层不同的材料组成:玻璃层、薄层氟掺杂氧化锡衬底(FTO)、TiO2电子传输层、钙钛矿活性层(甲基碘化铅铵(CH3NH3PbI3))、Spiro-Ometad空穴传输层和金(Au)电极。本文综述了钙钛矿太阳能电池复合材料的选择性使用研究,具体为:Spiro-Ometad层、甲基铵碘化铅层(CH3NH3PbI3)和TiO2层,钙钛矿层厚度随钙钛矿层厚度的变化而变化。初步仿真结果表明,使用金(Au)电极时,功率转换效率为20.34%。需要进一步的研究,在设备制造的新技术将创造均匀的薄膜层,将测试提高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信