On the Use of Deeper CNNs in Hand Gesture Recognition Based on sEMG Signals

N. Tsagkas, Panagiotis Tsinganos, A. Skodras
{"title":"On the Use of Deeper CNNs in Hand Gesture Recognition Based on sEMG Signals","authors":"N. Tsagkas, Panagiotis Tsinganos, A. Skodras","doi":"10.1109/IISA.2019.8900709","DOIUrl":null,"url":null,"abstract":"In the past few years, a great interest for the classification of hand gestures with Deep Learning methods based on surface electromyography (sEMG) signals has been developed in the scientific community. In line with latest works in the field, the objective of our work is the construction of a novel Convolutional Neural Network architecture, for the classification of hand-gestures. Our model, while avoiding overfitting, did not perform significantly better compared to a much shallower network. The results suggest that the lack of diversity in the sEMG recordings between certain hand-gestures limits the performance of the model. In addition, the classification accuracy on a database we developed using a commercial device (Myo Armband) was substantially higher (approximately 24%) than a similar benchmark dataset recorded with the same device.","PeriodicalId":371385,"journal":{"name":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2019.8900709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In the past few years, a great interest for the classification of hand gestures with Deep Learning methods based on surface electromyography (sEMG) signals has been developed in the scientific community. In line with latest works in the field, the objective of our work is the construction of a novel Convolutional Neural Network architecture, for the classification of hand-gestures. Our model, while avoiding overfitting, did not perform significantly better compared to a much shallower network. The results suggest that the lack of diversity in the sEMG recordings between certain hand-gestures limits the performance of the model. In addition, the classification accuracy on a database we developed using a commercial device (Myo Armband) was substantially higher (approximately 24%) than a similar benchmark dataset recorded with the same device.
基于表面肌电信号的深层cnn在手势识别中的应用
在过去的几年里,科学界对基于表面肌电图(sEMG)信号的深度学习方法进行手势分类产生了极大的兴趣。根据该领域的最新工作,我们的工作目标是构建一种新的卷积神经网络架构,用于手势的分类。我们的模型虽然避免了过拟合,但与一个更浅的网络相比,并没有表现得更好。结果表明,某些手势之间的表面肌电信号记录缺乏多样性限制了模型的性能。此外,我们使用商业设备(Myo Armband)开发的数据库上的分类准确性大大高于使用相同设备记录的类似基准数据集(约24%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信