Efficient Pomegranate Segmentation with UNet: A Comparative Analysis of Backbone Architectures and Knowledge Distillation

Shubham S. Mane, P. Bartakke, Tulshidas Bastewad
{"title":"Efficient Pomegranate Segmentation with UNet: A Comparative Analysis of Backbone Architectures and Knowledge Distillation","authors":"Shubham S. Mane, P. Bartakke, Tulshidas Bastewad","doi":"10.1051/itmconf/20235401001","DOIUrl":null,"url":null,"abstract":"This work examines the segmentation of on-field images of pomegranate fruit using UNet model with different backbones. Precise and effective segmentation of pomegranate fruits on the field is essential for automating yield estimation, disease detection, and quality evaluation in the agricultural industry. The models have been trained and validated using actual images captured in a pomegranate field. The study assesses the performance of many backbones, including ResNet50, Inception ResNetV2, MobileNetv2, DenseNet121, EfficientNet, VGG16, and VGG19. The VGG19 backbone achieved the highest F1 score, 90.35%, according to the data. In addition, we employed feature-based knowledge distillation to move the knowledge from the VGG19 backbone to the lighter MobileNetv2 backbone (45x smaller than VGG19 in number of parameters), which increased the F1 score of MobileNetv2 from 86.97% to 89.91%. Our findings show that the effectiveness of the UNet model for pomegranate fruit segmentation is greatly impacted by the selection of the backbone architecture, and that knowledge distillation can improve the accuracy of UNet models with lighter backbones without significantly increasing their computational complexity.","PeriodicalId":433898,"journal":{"name":"ITM Web of Conferences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITM Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/itmconf/20235401001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work examines the segmentation of on-field images of pomegranate fruit using UNet model with different backbones. Precise and effective segmentation of pomegranate fruits on the field is essential for automating yield estimation, disease detection, and quality evaluation in the agricultural industry. The models have been trained and validated using actual images captured in a pomegranate field. The study assesses the performance of many backbones, including ResNet50, Inception ResNetV2, MobileNetv2, DenseNet121, EfficientNet, VGG16, and VGG19. The VGG19 backbone achieved the highest F1 score, 90.35%, according to the data. In addition, we employed feature-based knowledge distillation to move the knowledge from the VGG19 backbone to the lighter MobileNetv2 backbone (45x smaller than VGG19 in number of parameters), which increased the F1 score of MobileNetv2 from 86.97% to 89.91%. Our findings show that the effectiveness of the UNet model for pomegranate fruit segmentation is greatly impacted by the selection of the backbone architecture, and that knowledge distillation can improve the accuracy of UNet models with lighter backbones without significantly increasing their computational complexity.
基于UNet的石榴高效分割:主干结构与知识蒸馏的比较分析
本文研究了用不同骨架的UNet模型对石榴果现场图像进行分割。石榴果实在田间的精确、有效分割是实现农业生产中产量估算、病害检测和质量评价自动化的必要条件。这些模型已经通过在石榴田拍摄的实际图像进行了训练和验证。该研究评估了许多骨干网的性能,包括ResNet50、Inception ResNetV2、MobileNetv2、DenseNet121、EfficientNet、VGG16和VGG19。数据显示,VGG19骨干网F1得分最高,为90.35%。此外,我们采用基于特征的知识精馏法将知识从VGG19骨干网转移到更轻的MobileNetv2骨干网(参数数比VGG19小45倍),将MobileNetv2的F1分数从86.97%提高到89.91%。研究结果表明,UNet模型对石榴果的分割效果受主干结构选择的影响较大,知识精馏法可以在不显著增加UNet模型计算复杂度的前提下提高UNet模型的分割精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信