An accurate sleep staging system with novel feature generation and auto-mapping

Zhuo Zhang, Cuntai Guan
{"title":"An accurate sleep staging system with novel feature generation and auto-mapping","authors":"Zhuo Zhang, Cuntai Guan","doi":"10.1109/ICOT.2017.8336079","DOIUrl":null,"url":null,"abstract":"Traditional sleep monitoring conducted in professional sleep labs and scored by sleep specialist is costly and labor intensive. Recent development of light-weight headband EEG provides possible solution for home-based sleep monitoring. This study proposed a machine learning approach for automatic sleep stage detection. A set of effective and efficient features are extracted from EEG data. The utilization of a collection of well annotated sleep data ensures the quality of learning model. A feature mapping algorithm is proposed to map the feature spaces generated from EEG data acquired through different electrodes. We collected headband EEG data for 1 hour naps in experiments conducted in our sleep lab. Preliminary result shows that sleep stages detected by proposed method are highly agreeable with the sleepiness score we obtained.","PeriodicalId":297245,"journal":{"name":"2017 International Conference on Orange Technologies (ICOT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Orange Technologies (ICOT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOT.2017.8336079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Traditional sleep monitoring conducted in professional sleep labs and scored by sleep specialist is costly and labor intensive. Recent development of light-weight headband EEG provides possible solution for home-based sleep monitoring. This study proposed a machine learning approach for automatic sleep stage detection. A set of effective and efficient features are extracted from EEG data. The utilization of a collection of well annotated sleep data ensures the quality of learning model. A feature mapping algorithm is proposed to map the feature spaces generated from EEG data acquired through different electrodes. We collected headband EEG data for 1 hour naps in experiments conducted in our sleep lab. Preliminary result shows that sleep stages detected by proposed method are highly agreeable with the sleepiness score we obtained.
具有新颖特征生成和自动映射的精确睡眠分期系统
传统的睡眠监测是在专业的睡眠实验室进行的,由睡眠专家评分,成本高昂,而且需要大量的劳动。最近发展的轻型头带脑电图为家庭睡眠监测提供了可能的解决方案。本研究提出了一种自动检测睡眠阶段的机器学习方法。从脑电数据中提取出一组有效、高效的特征。使用一组注释良好的睡眠数据保证了学习模型的质量。提出了一种特征映射算法,对不同电极采集的脑电数据生成的特征空间进行映射。在我们的睡眠实验室中,我们收集了小睡1小时的头带脑电图数据。初步结果表明,该方法检测到的睡眠阶段与我们得到的困倦评分高度吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信