Visualisation of Temporal Network Data via Time-Aware Static Representations with HOTVis

Vincenzo Perri, Ingo Scholtes
{"title":"Visualisation of Temporal Network Data via Time-Aware Static Representations with HOTVis","authors":"Vincenzo Perri, Ingo Scholtes","doi":"10.1145/3442442.3452053","DOIUrl":null,"url":null,"abstract":"The visual analysis of temporal network data is often hindered by the cognitively demanding nature of dynamic graphic visualizations. Addressing this issue, the graph visualization tool HOTVis generates time-aware static network visualizations that highlight the causal topology of temporal networks, i.e. which nodes can directly and indirectly influence each other, and are thus considerably easier to interpret than state-of-the-art dynamic graph visualizations.","PeriodicalId":129420,"journal":{"name":"Companion Proceedings of the Web Conference 2021","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442442.3452053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The visual analysis of temporal network data is often hindered by the cognitively demanding nature of dynamic graphic visualizations. Addressing this issue, the graph visualization tool HOTVis generates time-aware static network visualizations that highlight the causal topology of temporal networks, i.e. which nodes can directly and indirectly influence each other, and are thus considerably easier to interpret than state-of-the-art dynamic graph visualizations.
基于HOTVis的时间感知静态表示的时间网络数据可视化
动态图形可视化的认知要求往往阻碍了时间网络数据的可视化分析。为了解决这个问题,图形可视化工具HOTVis生成了时间感知的静态网络可视化,突出了时间网络的因果拓扑,即哪些节点可以直接或间接地相互影响,因此比最先进的动态图形可视化更容易解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信