Statistical machine learning for network intrusion detection: a data quality perspective

E. Lauría, G. Tayi
{"title":"Statistical machine learning for network intrusion detection: a data quality perspective","authors":"E. Lauría, G. Tayi","doi":"10.1504/IJSSCI.2008.019611","DOIUrl":null,"url":null,"abstract":"In this paper, we present our research in applying statistical machine learning methods for network intrusion detection. With the advent of online distributed services, the issue of preventing network intrusion and other forms of information security failures is gaining prominence. In this work, we use two different algorithms for classification (decision trees and naive Bayes classifier) to build predictive models capable of distinguishing between 'bad' TCP/IP connections, called intrusions attacks, and 'good' normal TCP/IP connections. We investigate the effect of training the models using both clean and dirty data. The goal is to analyse the predictive power of network intrusion classification models trained with data of varying quality. The classifiers are contrasted with a clustering-based approach for comparison purposes.","PeriodicalId":365774,"journal":{"name":"International Journal of Services Sciences","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Services Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSSCI.2008.019611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we present our research in applying statistical machine learning methods for network intrusion detection. With the advent of online distributed services, the issue of preventing network intrusion and other forms of information security failures is gaining prominence. In this work, we use two different algorithms for classification (decision trees and naive Bayes classifier) to build predictive models capable of distinguishing between 'bad' TCP/IP connections, called intrusions attacks, and 'good' normal TCP/IP connections. We investigate the effect of training the models using both clean and dirty data. The goal is to analyse the predictive power of network intrusion classification models trained with data of varying quality. The classifiers are contrasted with a clustering-based approach for comparison purposes.
网络入侵检测的统计机器学习:数据质量视角
本文介绍了统计机器学习方法在网络入侵检测中的应用研究。随着在线分布式服务的出现,防止网络入侵和其他形式的信息安全故障的问题日益突出。在这项工作中,我们使用两种不同的分类算法(决策树和朴素贝叶斯分类器)来构建能够区分“不良”TCP/IP连接(称为入侵攻击)和“良好”正常TCP/IP连接的预测模型。我们研究了使用干净数据和脏数据训练模型的效果。目的是分析用不同质量的数据训练的网络入侵分类模型的预测能力。为了进行比较,将分类器与基于聚类的方法进行对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信