Early Experiences with Saving Energy in Direct Interconnection Networks

F. Zahn, S. Lammel, H. Fröning
{"title":"Early Experiences with Saving Energy in Direct Interconnection Networks","authors":"F. Zahn, S. Lammel, H. Fröning","doi":"10.1109/HiPINEB.2017.10","DOIUrl":null,"url":null,"abstract":"Energy is emerging to become one of the most crucial factors in design decisions for future large scale computing systems. Especially Exascale-installations will have to operate within hard power and energy constraints. Besides economical reasons, power consumption is also limited by a limited power distribution, cooling capabilities, and minimization of carbon footprints. While other components, such as processors, become more and more energy-proportional, interconnects are still highly energy-disproportional. Although interconnection networks are contributing only about 10-20% to the overall power consumption of High-Performance Computing (HPC) or Cloud systems, this fraction is likely to increase significantly in the near future. Therefore, power saving strategies are mandatory for improving energy efficiency and thereby performance within hard power constraints. In this work, we introduce a simple energy saving strategy, which switches links on and off, depending on the user's performance constraints. Therefore, we adapted an existing OMNeT++ network simulator by adding new energy features. This simulator allows us to run traces of real world applications, including LULESH, NAMD, and Graph500 with different configurations. We show that this policy enables possible energy savings of up to 39% in interconnection networks. Furthermore, we demonstrate the impact of hardware design parameters, such as transition time, on possible power saving strategies.","PeriodicalId":426494,"journal":{"name":"2017 IEEE 3rd International Workshop on High-Performance Interconnection Networks in the Exascale and Big-Data Era (HiPINEB)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 3rd International Workshop on High-Performance Interconnection Networks in the Exascale and Big-Data Era (HiPINEB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPINEB.2017.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Energy is emerging to become one of the most crucial factors in design decisions for future large scale computing systems. Especially Exascale-installations will have to operate within hard power and energy constraints. Besides economical reasons, power consumption is also limited by a limited power distribution, cooling capabilities, and minimization of carbon footprints. While other components, such as processors, become more and more energy-proportional, interconnects are still highly energy-disproportional. Although interconnection networks are contributing only about 10-20% to the overall power consumption of High-Performance Computing (HPC) or Cloud systems, this fraction is likely to increase significantly in the near future. Therefore, power saving strategies are mandatory for improving energy efficiency and thereby performance within hard power constraints. In this work, we introduce a simple energy saving strategy, which switches links on and off, depending on the user's performance constraints. Therefore, we adapted an existing OMNeT++ network simulator by adding new energy features. This simulator allows us to run traces of real world applications, including LULESH, NAMD, and Graph500 with different configurations. We show that this policy enables possible energy savings of up to 39% in interconnection networks. Furthermore, we demonstrate the impact of hardware design parameters, such as transition time, on possible power saving strategies.
直接互联网络节能的早期经验
能源正逐渐成为未来大规模计算系统设计决策中最关键的因素之一。特别是百亿亿级的安装将不得不在硬实力和能源限制下运行。除了经济原因,电力消耗也受到有限的电力分配、冷却能力和最小化碳足迹的限制。当其他组件,如处理器,变得越来越能量成比例时,互连仍然是高度能量不成比例的。虽然互连网络仅占高性能计算(HPC)或云系统总功耗的10-20%,但在不久的将来,这一比例可能会显著增加。因此,为了提高能源效率,从而提高硬实力约束下的性能,节能策略是强制性的。在这项工作中,我们介绍了一个简单的节能策略,它根据用户的性能限制开关链接。因此,我们对现有的omnet++网络模拟器进行了调整,增加了新的能源特性。这个模拟器允许我们运行真实世界应用程序的踪迹,包括LULESH、NAMD和Graph500不同的配置。我们表明,这一政策可以在互连网络中节省高达39%的能源。此外,我们还演示了硬件设计参数(如转换时间)对可能的节能策略的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信