{"title":"Data stability enhancement techniques for nanoscale memory circuits: 7T memory design tradeoffs and options in 80nm UMC CMOS technology","authors":"Hong Zhu, V. Kursun","doi":"10.1109/SOCDC.2010.5682947","DOIUrl":null,"url":null,"abstract":"SRAM data stability and leakage currents are major concerns in nanometer CMOS technologies. The primary design challenge related to the conventional six-transistor (6T) memory cells is the conflicting set of requirements for achieving read data stability and write ability. A seven-transistor (7T) SRAM cell provides enhanced data stability by isolating the bitlines from data storage nodes during a read operation. The design tradeoffs in a 7T SRAM cell are explored in this paper with a UMC 80nm multi-threshold-voltage CMOS technology that provides a rich set of device options. An electrical performance metric is proposed to evaluate and compare the memory circuits. The multi-threshold-voltage SRAM circuits offering the highest data stability, widest write margin, smallest read and write power consumption, and lowest leakage currents are identified.","PeriodicalId":380183,"journal":{"name":"2010 International SoC Design Conference","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International SoC Design Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCDC.2010.5682947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
SRAM data stability and leakage currents are major concerns in nanometer CMOS technologies. The primary design challenge related to the conventional six-transistor (6T) memory cells is the conflicting set of requirements for achieving read data stability and write ability. A seven-transistor (7T) SRAM cell provides enhanced data stability by isolating the bitlines from data storage nodes during a read operation. The design tradeoffs in a 7T SRAM cell are explored in this paper with a UMC 80nm multi-threshold-voltage CMOS technology that provides a rich set of device options. An electrical performance metric is proposed to evaluate and compare the memory circuits. The multi-threshold-voltage SRAM circuits offering the highest data stability, widest write margin, smallest read and write power consumption, and lowest leakage currents are identified.