A Semantic Recommendation System for Learning Personalization in Massive Open Online Courses

Sara Assami, N. Daoudi, R. Ajhoun
{"title":"A Semantic Recommendation System for Learning Personalization in Massive Open Online Courses","authors":"Sara Assami, N. Daoudi, R. Ajhoun","doi":"10.3991/ijes.v8i1.14229","DOIUrl":null,"url":null,"abstract":"For an innovation producing education, MOOC (Massive Open Online Course) platforms offer a plethora of learning resources and pedagogical activities to support the university’s 4.0 new era and the lifelong learning movement. Nevertheless, the rapid advances in learning technologies imply the need for personalized guidance for learners and adapted learning materials. In this paper we seek to enhance the MOOC learner experience by providing a semantic recommender system for the diversity and abundance of MOOCs available for learners. Firstly, the paper analyses the state of the art of the semantic recommendation approach in a distance learning context. Then it describes the proposed MOOC recommendation system that uses the ontological representation of the learner model and MOOCs content to make its intelligent suggestions. Finally, we explore the development phases of the semantic MOOC recommendation system to define the implications for the progress of our research.","PeriodicalId":427062,"journal":{"name":"Int. J. Recent Contributions Eng. Sci. IT","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Recent Contributions Eng. Sci. IT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijes.v8i1.14229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

For an innovation producing education, MOOC (Massive Open Online Course) platforms offer a plethora of learning resources and pedagogical activities to support the university’s 4.0 new era and the lifelong learning movement. Nevertheless, the rapid advances in learning technologies imply the need for personalized guidance for learners and adapted learning materials. In this paper we seek to enhance the MOOC learner experience by providing a semantic recommender system for the diversity and abundance of MOOCs available for learners. Firstly, the paper analyses the state of the art of the semantic recommendation approach in a distance learning context. Then it describes the proposed MOOC recommendation system that uses the ontological representation of the learner model and MOOCs content to make its intelligent suggestions. Finally, we explore the development phases of the semantic MOOC recommendation system to define the implications for the progress of our research.
面向大规模在线开放课程学习个性化的语义推荐系统
对于一个创新的生产教育,MOOC(大规模开放在线课程)平台提供了大量的学习资源和教学活动,以支持大学的4.0新时代和终身学习运动。然而,学习技术的迅速进步意味着需要为学习者提供个性化指导和适应的学习材料。在本文中,我们试图通过提供一个语义推荐系统来提高MOOC学习者的体验,为学习者提供多样化和丰富的MOOC。首先,本文分析了远程学习环境下语义推荐方法的研究现状。然后对所提出的MOOC推荐系统进行了描述,该系统利用学习者模型的本体表示和MOOC内容进行智能推荐。最后,我们探讨了语义MOOC推荐系统的发展阶段,以定义我们研究进展的含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信