A Tutorial Markov Analysis of Effective Human Tutorial Sessions

NLP-TEA@ACL Pub Date : 2018-07-01 DOI:10.18653/v1/W18-3704
Nabin Maharjan, V. Rus
{"title":"A Tutorial Markov Analysis of Effective Human Tutorial Sessions","authors":"Nabin Maharjan, V. Rus","doi":"10.18653/v1/W18-3704","DOIUrl":null,"url":null,"abstract":"This paper investigates what differentiates effective tutorial sessions from less effective sessions. Towards this end, we characterize and explore human tutors’ actions in tutorial dialogue sessions by mapping the tutor-tutee interactions, which are streams of dialogue utterances, into streams of actions, based on the language-as-action theory. Next, we use human expert judgment measures, evidence of learning (EL) and evidence of soundness (ES), to identify effective and ineffective sessions. We perform sub-sequence pattern mining to identify sub-sequences of dialogue modes that discriminate good sessions from bad sessions. We finally use the results of sub-sequence analysis method to generate a tutorial Markov process for effective tutorial sessions.","PeriodicalId":321264,"journal":{"name":"NLP-TEA@ACL","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NLP-TEA@ACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-3704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper investigates what differentiates effective tutorial sessions from less effective sessions. Towards this end, we characterize and explore human tutors’ actions in tutorial dialogue sessions by mapping the tutor-tutee interactions, which are streams of dialogue utterances, into streams of actions, based on the language-as-action theory. Next, we use human expert judgment measures, evidence of learning (EL) and evidence of soundness (ES), to identify effective and ineffective sessions. We perform sub-sequence pattern mining to identify sub-sequences of dialogue modes that discriminate good sessions from bad sessions. We finally use the results of sub-sequence analysis method to generate a tutorial Markov process for effective tutorial sessions.
有效人类教程会话的教程马尔可夫分析
本文探讨了有效辅导课与低效辅导课的区别。为此,我们基于语言即行动理论,通过将导师与导师之间的互动(对话话语流)映射为行动流,来表征和探索导师在辅导对话会话中的行为。接下来,我们使用人类专家判断措施,学习证据(EL)和健全证据(ES),来识别有效和无效的会话。我们执行子序列模式挖掘来识别对话模式的子序列,以区分好会话和坏会话。最后,我们利用子序列分析方法的结果生成了有效导师课的马尔可夫过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信