Toward an Effective Combination of multiple Visual Features for Semantic Image Annotation

B. Minaoui, M. Oujaoura, M. Fakir, M. Sajieddine
{"title":"Toward an Effective Combination of multiple Visual Features for Semantic Image Annotation","authors":"B. Minaoui, M. Oujaoura, M. Fakir, M. Sajieddine","doi":"10.11591/IJEECS.V15.I3.PP533-543","DOIUrl":null,"url":null,"abstract":"In this paper we study the problem of combining low-level visual features for semantic image annotation. The problem is tackled with a two different approaches that combines texture, color and shape features via a Bayesian network classifier. In first approach, vector concatenation has been applied to combine the three low-level visual features. All three descriptors are normalized and merged into a unique vector used with single classifier. In the second approach, the three types of visual features are combined in parallel scheme via three classifiers. Each type of descriptors is used separately with single classifier. The experimental results show that the semantic image annotation accuracy is higher when the second approach is used.","PeriodicalId":247642,"journal":{"name":"TELKOMNIKA Indonesian Journal of Electrical Engineering","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TELKOMNIKA Indonesian Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJEECS.V15.I3.PP533-543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we study the problem of combining low-level visual features for semantic image annotation. The problem is tackled with a two different approaches that combines texture, color and shape features via a Bayesian network classifier. In first approach, vector concatenation has been applied to combine the three low-level visual features. All three descriptors are normalized and merged into a unique vector used with single classifier. In the second approach, the three types of visual features are combined in parallel scheme via three classifiers. Each type of descriptors is used separately with single classifier. The experimental results show that the semantic image annotation accuracy is higher when the second approach is used.
面向语义图像标注的多视觉特征有效组合
本文研究了结合底层视觉特征进行语义图像标注的问题。这个问题是通过贝叶斯网络分类器结合纹理、颜色和形状特征的两种不同的方法来解决的。在第一种方法中,向量拼接被用于组合三个低级视觉特征。这三个描述符被归一化并合并成一个唯一的向量,用于单个分类器。在第二种方法中,三种类型的视觉特征通过三个分类器并行组合。每种类型的描述符与单个分类器单独使用。实验结果表明,采用第二种方法时,语义图像标注的准确率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信