{"title":"Inherited Bone Marrow Failure and Chromosome Instability Syndromes and their Cancer Predisposition","authors":"Zhangyi Wu","doi":"10.5772/INTECHOPEN.81546","DOIUrl":null,"url":null,"abstract":"Inherited bone marrow failure syndromes (IBMFS) and chromosome instability syndromes (CIS) are the most classic and representative genetic syndromes. They are classified as genetic rare diseases, typically with complex medical complications in the delay of mental and physical development. Commonly, these syndromes present with different degrees of dysmorphics; organs/systems dysfunction generally and these syndromes have higher risk of inherited solid cancer and leukemia predisposition due to the similar pathway of DNA defects. These syndromes are often hard to diagnose and they overlap with their phenotypes clinically. Very importantly cancers from the germ line mutation of these syndromes require different treatment strategies with the sporadic malignancies. The significance of recognition of such diseases is not only beneficial to patients phenotypically affected but also to individuals phenotypically unaffected and members/relatives of the family. Remarkable advances have been made in the definition and classification of these genetic syndromes. Identification of the IBMFS and CIS has led to important advances in the understanding of the genotypes, guiding the clinical practice of the phenotypes. Interestingly, such studies provided insights into the function of the various DNA repair pathways. Fanconi anemia studies are an example in IBMFS and CIS is named as the paradigm of the studies of cancer and aging.","PeriodicalId":158093,"journal":{"name":"Contemporary Pediatric Hematology and Oncology","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Pediatric Hematology and Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.81546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Inherited bone marrow failure syndromes (IBMFS) and chromosome instability syndromes (CIS) are the most classic and representative genetic syndromes. They are classified as genetic rare diseases, typically with complex medical complications in the delay of mental and physical development. Commonly, these syndromes present with different degrees of dysmorphics; organs/systems dysfunction generally and these syndromes have higher risk of inherited solid cancer and leukemia predisposition due to the similar pathway of DNA defects. These syndromes are often hard to diagnose and they overlap with their phenotypes clinically. Very importantly cancers from the germ line mutation of these syndromes require different treatment strategies with the sporadic malignancies. The significance of recognition of such diseases is not only beneficial to patients phenotypically affected but also to individuals phenotypically unaffected and members/relatives of the family. Remarkable advances have been made in the definition and classification of these genetic syndromes. Identification of the IBMFS and CIS has led to important advances in the understanding of the genotypes, guiding the clinical practice of the phenotypes. Interestingly, such studies provided insights into the function of the various DNA repair pathways. Fanconi anemia studies are an example in IBMFS and CIS is named as the paradigm of the studies of cancer and aging.