Detection of Insect Invasion Symptoms on Tree Leaves Using Image Processing

Muhammad Badrisya Nordin, S. B. Hisham
{"title":"Detection of Insect Invasion Symptoms on Tree Leaves Using Image Processing","authors":"Muhammad Badrisya Nordin, S. B. Hisham","doi":"10.1109/ICOCO56118.2022.10031739","DOIUrl":null,"url":null,"abstract":"This project aims to help farmers in Lumut, Perak to combat thrips invasion on mango trees. It would help reduce loss of fruit-producing branches, manual inspections, and the need to cover large acres of land manually. Data was collected by using a Canon DSLR camera at lm distance in natural lighting and uncontrolled background. Images of healthy and diseased new leaves are pre-processed to remove noise. Masking and thresholding using a range of intensity values are used to remove the background. After that, the images were clustered using Fuzzy C-Means clustering. It was found that this method was more suitable than K-Means clustering as it uses a soft clustering approach. The images obtained were then classified using Support Vector Machine (SVM). An average classification accuracy of 9S.52% was achieved.","PeriodicalId":319652,"journal":{"name":"2022 IEEE International Conference on Computing (ICOCO)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Computing (ICOCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOCO56118.2022.10031739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This project aims to help farmers in Lumut, Perak to combat thrips invasion on mango trees. It would help reduce loss of fruit-producing branches, manual inspections, and the need to cover large acres of land manually. Data was collected by using a Canon DSLR camera at lm distance in natural lighting and uncontrolled background. Images of healthy and diseased new leaves are pre-processed to remove noise. Masking and thresholding using a range of intensity values are used to remove the background. After that, the images were clustered using Fuzzy C-Means clustering. It was found that this method was more suitable than K-Means clustering as it uses a soft clustering approach. The images obtained were then classified using Support Vector Machine (SVM). An average classification accuracy of 9S.52% was achieved.
利用图像处理技术检测树叶上昆虫入侵症状
该项目旨在帮助霹雳州卢穆特的农民对抗蓟马对芒果树的入侵。这将有助于减少果树生产分支的损失,减少人工检查,减少人工覆盖大片土地的需要。使用佳能数码单反相机在自然光线和无控制背景下拍摄。健康和患病新叶的图像经过预处理以去除噪声。掩蔽和阈值使用范围的强度值被用来去除背景。然后,使用模糊c均值聚类对图像进行聚类。由于该方法采用了软聚类方法,因此比K-Means聚类更适合。然后使用支持向量机(SVM)对得到的图像进行分类。平均分类准确率为9S。达到52%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信